16.2. Завдання синтезу оптимальних систем
І МАТЕМАТИЧНІ МОДЕЛІ ОБ'ЄКТІВ КЕРУВАННЯ
Рішеннязавдання синтезу оптимальної системи полягає в розробці системи керування, що відповідає заданим вимогам, тобто в створенні системи, що реалізує обраний критерій оптимальності. Залежно від обсягувідомостей про структуру системи керування завдання синтезу ставиться в одній із двох наступних постановок.
Перша постановка охоплює випадки, коли структура системи відома. У таких випадках об'єкт і регулятор можуть бути описані відповідними передатними функціями, а завдання синтезу зводиться до визначення оптимальних значень числових параметрів всіх елементів системи, тобто таких параметрів, які забезпечують реалізацію обраного критерію оптимальності.
У другій постановці завдання синтезу ставиться при невідомій структурі системи. У цьому випадку потрібно визначити таку структуру й такі параметри системи, які забезпечать систему, оптимальну за прийнятим критерієм якості. В інженерній практиці завдання синтезу в такій постановці зустрічається рідко. Найчастіше об'єкт керування або заданий як фізичний пристрій, або описаний математично, і завдання синтезу зводиться до синтезу оптимального регулятора. Варто підкреслити, що й у цьому випадку необхідний системний підхід до синтезу системи оптимального керування. Суть такого підходу полягає в тім, що при синтезі регулятора розглядається вся система (регулятор і об'єкт) як єдине ціле.
На початковій стадії синтезу оптимального регулятора завдання зводиться до його аналітичного конструювання, тобто до визначення його математичного опису. При цьому ту саму математичну модель регулятора можна реалізувати різними фізичними пристроями. Вибір конкретної фізичної реалізації аналітично певного регулятора здійснюється з урахуванням умов роботи конкретної системи автоматичного керування. Таким чином, завдання синтезу оптимального регулятора неоднозначні й може бути вирішена різними шляхами.
При синтезі системи оптимального керуваннядосить важливе створення моделі об'єкта, максимально адекватної реальному об'єкту. У теорії керування так само, як в інших сучасних галузях науки, основними видами моделей об'єктів є математичні моделі - рівняння статики й динаміки об'єктів.
При рішеннізавдань синтезу оптимальної системи єдиною математичною моделлю об'єктів керування звичайно є модель у формі рівнянь стану. Під станом системи автоматичного керуванняв кожний момент часу розуміється мінімальний набір змінних (змінністани), що містить кількість інформації, достатнє для визначення координат системи в поточному й майбутньому станах системи.
Вихідні рівняння об'єкта звичайно нелінійні. Для приведення їх до форми рівнянь станів широко використовуються методи лінійних перетворень вихідних рівнянь.
Для характеристики об'єкта керуваннявведемо наступні поняття:
Х{х1, х2,..., хn) — вектор стану об'єкта;
Y{y1, y2,...., ym} — вектор вихідних величин;
U{u1,u2,…,ur}—вектор керування, що прикладається до об'єкта;
F{f1,f2,…,fl}—вектор збурювання;
X(t0) = Хо— вектор початкового стану об'єкта.
Завдання оптимізації в такому випадку зводяться до задоволення функціонала якості J[X,U,F] при обмеженнях X де — область припустимих значень координат стану об'єкта; — область припустимих значень керувань.
Широкий клас об'єктів оптимальних систем у результаті лінеаризації вихідних рівнянь може бути описаний рівняннями:
f [X,U,F(t)]; Y = φ(X,U); X(t0) =X0 ;
Наприклад,
Y=DX+EU; X(t0)=X0;
де A, B, З, D, E - постійні коефіцієнти.
У теорії оптимального керування широко використовуються наступні математичні методи: принцип максимуму; динамічного програмування; варіаційного обчислення; математичного програмування. Кожний з перерахованих методів має свої особливості й, отже, свою область застосування.
Принцип максимуму дозволяє порівняно легко врахувати обмеження на керуючі впливи, підводимі до об'єкта керування. Метод найбільш ефективний при синтезі систем, оптимальних по швидкодії. Однак реалізація методу навіть із використанням ЕОМ значно утруднена.
Метод динамічного програмування володіє, більшими можливостями. Однак для систем високого порядку (вище четвертого) використання методу доситьважко. При декількохзміннікерування реалізація методу динамічного програмування на ЕОМ вимагає обсягів пам'яті, що перевищують можливості сучасних машин.
Варіаційне обчислення застосовується при відсутності обмежень на змінністани й на зміннікерування. Одержання чисельного рішення на базі методів варіаційного обчислення важко. Метод використовується, як правило, для деяких досить простих випадків.
Методи математичного програмування (лінійного, нелінійного й ін.) широко застосовуються для рішеннязавдань оптимального керування як в автоматичних, так і в автоматизованих системах. Загальна ідея методів полягає у відшуканні екстремуму функції в просторі багатьох змінних при обмеженнях у вигляді системи рівностей і нерівностей. Методи дозволяють знайти чисельне рішення широкого кола завдань оптимального керування.
Достоїнствами методів математичного програмування є можливість порівняно просто враховувати обмеження на керування й змінністани, а також звичайно припустимі вимоги до обсягу пам'яті.
- Основи теорії автоматичного управління
- Частина 1. Лінійні системи
- 1. Загальна характеристика об'єктів і систем автоматичного керування
- 1.1 Короткі історичні відомості
- 1.2 Основні поняття і визначення
- 1.3 Принципи регулювання
- 1.4 Приклади систем автоматичного регулювання в хімічній технології
- 1.5 Класифікація систем автоматичного керування
- 1.6 Тренувальні завдання
- 1.7 Тести
- 2 Регулярні сигнали і їх характеристики
- 2.1 Визначення регулярного сигналу
- 2.2 Основні типи регулярних сигналів. Періодичні і безперервні сигнали
- Перетворення Фурье, його основні властивості
- Спектри сигналів
- 2.5 Розподіл енергії в спектрах сигналів
- Практична ширина спектру і спотворення сигналів
- 2.7 Представлення сигналів
- 2.8 Сигнали. Їх види
- 2.9 Тренувальні завдання
- 2.10 Тести
- 3.Математичний опис автоматичних систем
- 3.1 Основні способи математичного опису. Рівняння руху.
- 3.2 Приклади рівнянь об'єктів керування
- 3.2.1 Гідравлічний резервуар
- 3.2.2 Електрична ємкість
- 3.2.3 Хімічний реактор повного перемішування
- 3.3 Визначення лінійної стаціонарної системи. Принцип суперпозиції
- 3.4 Динамічне поводження лінійних систем
- 3.5 Динамічні процеси в системах
- 3.6 Перехідна і вагова функції
- 3.6.1 Перехідна функція
- 3.6.2 Вагова функція
- 3.7 Інтеграл Дюамеля
- Перетворення Лапласа
- Визначення перетворення Лапласа
- Властивості перетворення Лапласа
- Рішення диференціальних рівнянь
- Розбиття на прості дроби
- Передаточна функція
- 3.10 Тренувальні завдання
- 3.11 Тести
- 4 Частотний метод дослідження лінійних систем
- 4.1 Елементи теорії функції комплексного змінного
- 4.2 Частотні характеристики
- 4.3 Зв'язок перетворень Лапласа і Фур’є
- 4.4 Зв'язок диференціального рівняння з частотними характеристиками
- 4.5 Фізичний сенс частотних характеристик
- 4.6 Мінімально-фазові системи
- 4.7 Поняття про логарифмічні частотні характеристики
- 4.8 Взаємозв'язок динамічних характеристик
- 4.9 Тренувальні завдання
- 4.10 Тести
- 5 Структурний аналіз лінійних систем
- 5.1 Ланка направленої дії
- 5.2 Типові динамічні ланки
- 5.2.1 Підсилювальна ланка
- 5.2.2 Інтегруюча ланка
- 5.2.6 Ланка чистого запізнювання
- 5.2.7 Аперіодична ланка першого порядку
- 5.2.8Ланка щоінерційно-форсуює
- 5.2.9 Аперіодична ланка другого порядку
- 5.2.10 Коливальна ланка
- 5.2.11 Особливі ланки
- 5.3 Основні способи з'єднання ланок
- 5.3.1 Структурні схеми
- 5.3.2 Паралельне з'єднання ланок
- 5.3.3 Послідовне з'єднання ланок
- 5.3.4 З'єднання із зворотним зв'язком
- 5.3.5 Передаточні функції замкнутої системи
- 5.3.6 Правила перетворення структурних схем
- 5.3.7 Формула мейсона
- 5.4 Типові закони регулювання
- 5.4.1 Пропорційний закон регулювання
- 5.4.2 Інтегральний закон регулювання
- 5.4.3 Диференційний закон регулювання
- 5.4.4 Пропорційно-диференційний закон регулювання
- 5.4.5 Пропорційно-інтегральний закон регулювання
- 5.4.6 Пропорційно-інтегрально-диференційний закон регулювання
- 5.5 Тренувальні завдання
- 5.6 Тести
- 6 Стійкість лінійних систем
- 6.1 Поняття стійкості і її визначення
- 6.2 Стійкість лінійного диференціального рівняння з постійнимикоефіцієнтами
- 6.3 Зображення руху у фазовому просторі
- 6.3.1 Поняття фазового простору
- 6.3.2 Фазові портрети лінійних систем другого порядку
- 6.4 Поняття стійкості руху
- 6.5 Основні види стійкості
- 6.5.1 Орбітальна стійкість
- 6.5.2 Стійкість по ляпунову
- 6.5.3 Асимптотична стійкість
- 6.6 Необхідна умова стійкості
- 6.7 Алгебраїчні критерії стійкості
- 6.7.1 Критерій стійкості рауса
- 6.7.2 Критерій стійкості гурвіця
- 6.7.3 Критерій стійкості л’єнара-шипаро
- 6.7.4 Стійкість і стала похибка
- 6.7.5 Область стійкості
- 6.8 Частотні критерії стійкості
- 6.8.1 Принцип аргументу
- 6.8.2 Критерій міхайлова
- 6.8.3 Критерій найквіста
- 6.8.4 Застосування критеріїв для дослідження стійкості систем
- 6.8.5 Аналіз стійкості по логарифмічних частотних характеристиках
- 6.9Тренувальні завдання
- 6.10 Тести
- 7. Синтез стійких систем з необхідним запасом стійкості
- 7.1 Стійкість ланок і систем. Запас стійкості.
- 7.2 Межі стійкості систем
- 7.2.1 Межа стійкості для систем з пі-регулятором
- 7.2.2 Межа стійкості для систем з пі-регулятором
- 7.2.3 Межі стійкості для системи з і-регулятором
- 7.3 Запас стійкості і його оцінка
- 7.3.1 Кореневі методи оцінки запасу стійкості
- 7.3.2 Частотні методи оцінки запасу стійкості
- 7.4 Розширені частотні характеристики
- 7.5 Аналіз систем на запас стійкості
- 7.6 Синтез систем з необхідним запасом стійкості
- Система с п-регулятором
- 7.6.2 Система с і-регулятором
- 7.6.3 Система с пі-регулятором
- 7.6.4 Система з пд-регулятором
- 7.7 Використання логарифмічних частотних характеристик для забезпечення стійкості і заданого запасу стійкості
- 7.8 Структурно-стійкі системи
- 7.9 Малі параметри систем і їх вплив на стійкість
- 7.10 Використання корегуючих пристроїв для забезпечення стійкості і запасу стійкості
- 7.10.1 Послідовна корекція
- 7.10.2 Паралельна корекція
- 7.11 Тренувальні завдання
- 7.12 Тести
- 8.Якість процесів регулювання і методи її аналіза
- 8.1 Показники якості регулювання
- 8.1.1 Прямі показники якості регулювання
- 8.1.2 Непрямі показники якості регулювання
- 8.1.3 Інтегральні критерії якості регулювання
- 8.1.3.1 Лінійний інтегральний критерій
- 8.1.3.2 Модульний інтегральний критерій
- Інтегральний квадратичний критерій
- 8.2 Частотні методи аналізу якості регулювання
- 8.2.1 Залежність між перехідною і частотними характеристиками
- 8.2.2 Властивості дійсно-частотних характеристик і відповідних їмперехідних процесів
- 8.3 Поняття про чутливість систем автоматичного регулювання
- Тренувальні завдання
- 8.5 Тести
- 9 Методи розрахунку настроювальних параметрів для сар
- 9.1 Постановка задачі
- 9.2 Вибір оптимальних настройок регуляторів методом незгасаючих коливань
- 9.3 Алгоритм розрахунку області настройок типових регуляторів
- 9.4 Графоаналітичний метод розрахунку
- 9.5 Тренувальні завдання
- 9.6 Тести
- Частина 2 нелінійні системи
- 10 Методи лінеаризації характеристик нелінійних систем
- 10.1 Особливості нелінійних систем
- 10.2 Типові нелінійні елементи систем керування
- 10.3 Методи лінеаризації
- 10.3.1 Розкладання в ряд Тейлора
- 10.3.2 Гармонійна лінеаризація
- 10.3.3 Вібраційна лінеаризація
- 10.4 Тренувальні завдання
- 10.5 Тести
- 11 Дослідження нелінійних систем методом фазового простору
- 11.1 Загальні відомості про метод фазового простору
- Фазові портрети нелінійних систем другого порядку
- Методи побудови фазових портретів
- 11.3.1 Інтегрування рівнянь фазових траєкторій
- 11.3.2 Метод ізоклін
- 11.3.3 Метод припасовування
- 11.3.4 Метод зшивання
- 11.4 Тренувальні завдання
- 11.5 Тести
- 12 Аналіз нелінійних систем на стійкість і якість
- Основні види стійкості нелінійних систем
- Методи дослідження стійкості нелінійних систем
- 12.2.1 Перший метод Ляпунова
- 12.2.2 Другий метод Ляпунова
- 12.2.2.1 Поняття про знаковизначенні, знакопостійні і знакозмінні функції
- 12.2.2.2 ФункціяЛяпунова
- 12.2.2.3 Теореми Ляпунова
- 12.3 Методи побудови функції Ляпунова
- 12.3.1 Функція Ляпунова у вигляді квадратичних форм
- 12.3.2 Побудова функції Ляпунова методом г. Сеге
- 12.3.3 Побудова функції Ляпунова методом д. Шульца
- 12.3.4 Побудова функції Ляпунова методом Лур’є – Постникова
- 12.4 Приклади побудови функцій Ляпунова
- 12.5 Абсолютна стійкость по критерію Попова
- 12.6 Методи визначення якості регулювання нелінійних систем
- 12.7 Тренувальні завдання
- 12.8 Тести
- 13 Автоколивання в нелінійних системах
- 13.1 Режим автоколивань в нелінійних системах
- 13.2 Методи дослідження автоколивань в нелінійних системах
- 13.2.1 Критерій Бендіксона
- 13.2.2 Метод гармонійного балансу
- 13.3 Тренувальні завдання
- 13.4 Тести
- 14.1. Опис систем у просторі станів
- 14.2. Структура рішення рівнянь змінні стану
- 14.3. Характеристики систем у просторі станів
- 14.4. Нормальна форма рівнянь у просторі станів
- 14.5. Керування по стану. Системи керування
- 14.6. Оцінювання координат стану систем
- 14.7. Прямий кореневий метод синтезу систем керування
- 14.8 Тренувальні завдання
- 14.9 Тести
- 15. Дискретні системи автоматичного керування
- 15.1. Загальні відомості
- 15.2. Структура й класифікація імпульсних систем
- 15.3. Математичний апарат дослідження дискретних систем
- 15.4. Передатні функції розімкнутих імпульсних систем
- 15.5 Структурні схеми і передатні функції
- 15.6. Частотні характеристики імпульсних систем
- 15.7 Стійкість імпульсних систем
- 15.8. Перехідні процеси в імпульсних системах
- Перехідний процес
- 15.9 Точність і корекція імпульсних систем
- 15.10. Опис дискретних систем у просторі станів
- 15.11 Тренувальні завдання
- 15.12 Тести
- 16 Оптимальне керування динамічними системами
- 16.1. Основні поняття систем оптимального керування
- 16.2. Завдання синтезу оптимальних систем
- 16.3. Самонастроювальні і динамічні системи, що самонавчаються, оптимального керування
- 16.4 Тести
- Загальна характеристика об'єктів і систем автоматичного керування.
- 1.1 Короткі історичні відомості 3
- Регулярні сигнали і їхні характеристики
- Математичний опис автоматичних систем.
- Частотний метод дослідження лінійних систем
- Структурний аналіз лінійних систем
- 6. Стійкість лінійних систем
- 7. Синтез стійких систем з необхідним запасом стійкості
- 8. Якість процесів регулювання і методи її аналізу
- 9. Методи розрахунку настроювальних параметрів для сар
- 10.Методи лінеаризації характеристик нелінійних систем
- 11.Дослідження нелінійних систем методом фазового простору
- 14. Аналіз і синтез сау у просторі станів
- 15. Дискретні системи автоматичного керування
- 16. Оптимальне керування динамічними системами