8.1.2 Непрямі показники якості регулювання
Основну групу серед непрямих показників якості складають кореневі показники якості регулювання, до яких відносяться ступінь стійкості і ступінь коливальності. Ці показники вже були використані для визначення оцінки запасу стійкості. З погляду якості регулювання можна зробити наступні висновки.
1 Ступінь стійкості, визначуваний по формулі (7.7), характеризує інтенсивність згасання найбільш поволі затухаючої неколивальної складової перехідного процесу, яка визначається як . Хай дана система описується диференціальним рівнянням другого порядку, характеристичне рівняння якого має два дійсних різних кореня
(рис. 8.5, а). Останнім відповідають дві елементарні складові вільного руху системи
(рис. 8.5, б):
Рис. 8.5 Визначення якості монотонних перехідних процесів по ступеню стійкості:
а - розташування коренів характеристичного рівняння; б – складові перехідного процесу.
Як видно з графіків перехідних процесів, чим менше абсолютне значення кореня характеристичного рівняння, тим повільніше затухає відповідна йому складова. Результуючий перехідний процес
Його згасання визначається найбільш поволі затухаючою складовою, тобто найменшим по абсолютному значенню коренем характеристичного рівняння.
Якщо ж характеристичне рівняння системи має комплексно зв’язані корені, то складова перехідного процесу матиме коливальний характер
і дійсна частина кореня, а фактично ступінь стійкості, оскільки η = α, характеризує огинаючу (рис. 8.6).
Рис. 8.6 Визначення якості коливальних перехідних процесів по ступеню стійкості:
а – розташування коренів характеристичного рівняння; б– перехідні процеси.
Як видно з рис. 8.6, два коливальні перехідні процеси різної частоти мають однакові огинаючі, тобто . Але при однаковому ступені стійкості якість цих перехідних процесів істотно відрізняється один від одного. Отже, знання ступеня стійкості для оцінки якості коливальних перехідних процесів недостатньо.
Ступінь стійкості може бути використана для оцінки часу регулювання монотонних перехідних процесів. Дотична до
у точці t = 0 відсікає на осі абсцис відрізок 1/η (рис. 8.5, б). Час регулювання в цьому випадку визначається як
(8.3)
Якщо потрібно зменшити час регулювання, то, як випливає з (8.3), ступінь стійкості треба збільшувати. При оцінці часу регулювання частота не враховується.
2 Ступінь коливальності так само, як і ступінь стійкості, використовується і для оцінки запасу стійкості і для оцінки якості регулювання. Ступінь коливальності, визначувана відповідно до (7.8), характеризує згасання найбільш поволі затухаючої складової, яка визначається як
звідки витікає, що зміна частоти тягне і зміну амплітуди коливань.
Ступінь коливальності однозначно пов'язана із ступенем згасання. Дійсно, у момент часу toамплітуда вільної складової визначається як
,
а у момент часу t0+T, тобто через період
В цьому випадку ступінь загасання, згідно (8.2), запишеться:
оскільки
,
то
(8.4)
Ступінь згасання змінюється від 0 до 1, а ступінь коливальності – від 0 до . Найчастіше використовуються наступні їх значення:m = 0,141 (ψ= 0,61); m = 0,221 (ψ= 0,75); m = 0,366 (ψ = 0,9); m= 0,478 (ψ= 0,95).
Оцінка статичної похибки може бути отримана по граничній теоремі
(8.5)
де - передаточна функція замкнутої системи по каналу похибки;
X(s) - зображення задаючої дії, в більшості випадків x(t)= С = const і тоді X(s)= C/s.
З урахуванням вищесказаного
Наприклад, для систем з інтегральним регулятором статична похибка відсутня
А для систем з пропорційним регулятором рівна
Якщо в Wоб(s) коефіцієнт передачі рівний k, то
З останнього співвідношення видно, що в системах з П-регулятором статична похибка зменшується із збільшенням значення параметра настройки регулятора. У реальних системах береться максимально можливе значення , виходячи із забезпечення запасу стійкості.
На закінчення слід відмітити, що динамічна похибка кореневими методами не оцінюється.
- Основи теорії автоматичного управління
- Частина 1. Лінійні системи
- 1. Загальна характеристика об'єктів і систем автоматичного керування
- 1.1 Короткі історичні відомості
- 1.2 Основні поняття і визначення
- 1.3 Принципи регулювання
- 1.4 Приклади систем автоматичного регулювання в хімічній технології
- 1.5 Класифікація систем автоматичного керування
- 1.6 Тренувальні завдання
- 1.7 Тести
- 2 Регулярні сигнали і їх характеристики
- 2.1 Визначення регулярного сигналу
- 2.2 Основні типи регулярних сигналів. Періодичні і безперервні сигнали
- Перетворення Фурье, його основні властивості
- Спектри сигналів
- 2.5 Розподіл енергії в спектрах сигналів
- Практична ширина спектру і спотворення сигналів
- 2.7 Представлення сигналів
- 2.8 Сигнали. Їх види
- 2.9 Тренувальні завдання
- 2.10 Тести
- 3.Математичний опис автоматичних систем
- 3.1 Основні способи математичного опису. Рівняння руху.
- 3.2 Приклади рівнянь об'єктів керування
- 3.2.1 Гідравлічний резервуар
- 3.2.2 Електрична ємкість
- 3.2.3 Хімічний реактор повного перемішування
- 3.3 Визначення лінійної стаціонарної системи. Принцип суперпозиції
- 3.4 Динамічне поводження лінійних систем
- 3.5 Динамічні процеси в системах
- 3.6 Перехідна і вагова функції
- 3.6.1 Перехідна функція
- 3.6.2 Вагова функція
- 3.7 Інтеграл Дюамеля
- Перетворення Лапласа
- Визначення перетворення Лапласа
- Властивості перетворення Лапласа
- Рішення диференціальних рівнянь
- Розбиття на прості дроби
- Передаточна функція
- 3.10 Тренувальні завдання
- 3.11 Тести
- 4 Частотний метод дослідження лінійних систем
- 4.1 Елементи теорії функції комплексного змінного
- 4.2 Частотні характеристики
- 4.3 Зв'язок перетворень Лапласа і Фур’є
- 4.4 Зв'язок диференціального рівняння з частотними характеристиками
- 4.5 Фізичний сенс частотних характеристик
- 4.6 Мінімально-фазові системи
- 4.7 Поняття про логарифмічні частотні характеристики
- 4.8 Взаємозв'язок динамічних характеристик
- 4.9 Тренувальні завдання
- 4.10 Тести
- 5 Структурний аналіз лінійних систем
- 5.1 Ланка направленої дії
- 5.2 Типові динамічні ланки
- 5.2.1 Підсилювальна ланка
- 5.2.2 Інтегруюча ланка
- 5.2.6 Ланка чистого запізнювання
- 5.2.7 Аперіодична ланка першого порядку
- 5.2.8Ланка щоінерційно-форсуює
- 5.2.9 Аперіодична ланка другого порядку
- 5.2.10 Коливальна ланка
- 5.2.11 Особливі ланки
- 5.3 Основні способи з'єднання ланок
- 5.3.1 Структурні схеми
- 5.3.2 Паралельне з'єднання ланок
- 5.3.3 Послідовне з'єднання ланок
- 5.3.4 З'єднання із зворотним зв'язком
- 5.3.5 Передаточні функції замкнутої системи
- 5.3.6 Правила перетворення структурних схем
- 5.3.7 Формула мейсона
- 5.4 Типові закони регулювання
- 5.4.1 Пропорційний закон регулювання
- 5.4.2 Інтегральний закон регулювання
- 5.4.3 Диференційний закон регулювання
- 5.4.4 Пропорційно-диференційний закон регулювання
- 5.4.5 Пропорційно-інтегральний закон регулювання
- 5.4.6 Пропорційно-інтегрально-диференційний закон регулювання
- 5.5 Тренувальні завдання
- 5.6 Тести
- 6 Стійкість лінійних систем
- 6.1 Поняття стійкості і її визначення
- 6.2 Стійкість лінійного диференціального рівняння з постійнимикоефіцієнтами
- 6.3 Зображення руху у фазовому просторі
- 6.3.1 Поняття фазового простору
- 6.3.2 Фазові портрети лінійних систем другого порядку
- 6.4 Поняття стійкості руху
- 6.5 Основні види стійкості
- 6.5.1 Орбітальна стійкість
- 6.5.2 Стійкість по ляпунову
- 6.5.3 Асимптотична стійкість
- 6.6 Необхідна умова стійкості
- 6.7 Алгебраїчні критерії стійкості
- 6.7.1 Критерій стійкості рауса
- 6.7.2 Критерій стійкості гурвіця
- 6.7.3 Критерій стійкості л’єнара-шипаро
- 6.7.4 Стійкість і стала похибка
- 6.7.5 Область стійкості
- 6.8 Частотні критерії стійкості
- 6.8.1 Принцип аргументу
- 6.8.2 Критерій міхайлова
- 6.8.3 Критерій найквіста
- 6.8.4 Застосування критеріїв для дослідження стійкості систем
- 6.8.5 Аналіз стійкості по логарифмічних частотних характеристиках
- 6.9Тренувальні завдання
- 6.10 Тести
- 7. Синтез стійких систем з необхідним запасом стійкості
- 7.1 Стійкість ланок і систем. Запас стійкості.
- 7.2 Межі стійкості систем
- 7.2.1 Межа стійкості для систем з пі-регулятором
- 7.2.2 Межа стійкості для систем з пі-регулятором
- 7.2.3 Межі стійкості для системи з і-регулятором
- 7.3 Запас стійкості і його оцінка
- 7.3.1 Кореневі методи оцінки запасу стійкості
- 7.3.2 Частотні методи оцінки запасу стійкості
- 7.4 Розширені частотні характеристики
- 7.5 Аналіз систем на запас стійкості
- 7.6 Синтез систем з необхідним запасом стійкості
- Система с п-регулятором
- 7.6.2 Система с і-регулятором
- 7.6.3 Система с пі-регулятором
- 7.6.4 Система з пд-регулятором
- 7.7 Використання логарифмічних частотних характеристик для забезпечення стійкості і заданого запасу стійкості
- 7.8 Структурно-стійкі системи
- 7.9 Малі параметри систем і їх вплив на стійкість
- 7.10 Використання корегуючих пристроїв для забезпечення стійкості і запасу стійкості
- 7.10.1 Послідовна корекція
- 7.10.2 Паралельна корекція
- 7.11 Тренувальні завдання
- 7.12 Тести
- 8.Якість процесів регулювання і методи її аналіза
- 8.1 Показники якості регулювання
- 8.1.1 Прямі показники якості регулювання
- 8.1.2 Непрямі показники якості регулювання
- 8.1.3 Інтегральні критерії якості регулювання
- 8.1.3.1 Лінійний інтегральний критерій
- 8.1.3.2 Модульний інтегральний критерій
- Інтегральний квадратичний критерій
- 8.2 Частотні методи аналізу якості регулювання
- 8.2.1 Залежність між перехідною і частотними характеристиками
- 8.2.2 Властивості дійсно-частотних характеристик і відповідних їмперехідних процесів
- 8.3 Поняття про чутливість систем автоматичного регулювання
- Тренувальні завдання
- 8.5 Тести
- 9 Методи розрахунку настроювальних параметрів для сар
- 9.1 Постановка задачі
- 9.2 Вибір оптимальних настройок регуляторів методом незгасаючих коливань
- 9.3 Алгоритм розрахунку області настройок типових регуляторів
- 9.4 Графоаналітичний метод розрахунку
- 9.5 Тренувальні завдання
- 9.6 Тести
- Частина 2 нелінійні системи
- 10 Методи лінеаризації характеристик нелінійних систем
- 10.1 Особливості нелінійних систем
- 10.2 Типові нелінійні елементи систем керування
- 10.3 Методи лінеаризації
- 10.3.1 Розкладання в ряд Тейлора
- 10.3.2 Гармонійна лінеаризація
- 10.3.3 Вібраційна лінеаризація
- 10.4 Тренувальні завдання
- 10.5 Тести
- 11 Дослідження нелінійних систем методом фазового простору
- 11.1 Загальні відомості про метод фазового простору
- Фазові портрети нелінійних систем другого порядку
- Методи побудови фазових портретів
- 11.3.1 Інтегрування рівнянь фазових траєкторій
- 11.3.2 Метод ізоклін
- 11.3.3 Метод припасовування
- 11.3.4 Метод зшивання
- 11.4 Тренувальні завдання
- 11.5 Тести
- 12 Аналіз нелінійних систем на стійкість і якість
- Основні види стійкості нелінійних систем
- Методи дослідження стійкості нелінійних систем
- 12.2.1 Перший метод Ляпунова
- 12.2.2 Другий метод Ляпунова
- 12.2.2.1 Поняття про знаковизначенні, знакопостійні і знакозмінні функції
- 12.2.2.2 ФункціяЛяпунова
- 12.2.2.3 Теореми Ляпунова
- 12.3 Методи побудови функції Ляпунова
- 12.3.1 Функція Ляпунова у вигляді квадратичних форм
- 12.3.2 Побудова функції Ляпунова методом г. Сеге
- 12.3.3 Побудова функції Ляпунова методом д. Шульца
- 12.3.4 Побудова функції Ляпунова методом Лур’є – Постникова
- 12.4 Приклади побудови функцій Ляпунова
- 12.5 Абсолютна стійкость по критерію Попова
- 12.6 Методи визначення якості регулювання нелінійних систем
- 12.7 Тренувальні завдання
- 12.8 Тести
- 13 Автоколивання в нелінійних системах
- 13.1 Режим автоколивань в нелінійних системах
- 13.2 Методи дослідження автоколивань в нелінійних системах
- 13.2.1 Критерій Бендіксона
- 13.2.2 Метод гармонійного балансу
- 13.3 Тренувальні завдання
- 13.4 Тести
- 14.1. Опис систем у просторі станів
- 14.2. Структура рішення рівнянь змінні стану
- 14.3. Характеристики систем у просторі станів
- 14.4. Нормальна форма рівнянь у просторі станів
- 14.5. Керування по стану. Системи керування
- 14.6. Оцінювання координат стану систем
- 14.7. Прямий кореневий метод синтезу систем керування
- 14.8 Тренувальні завдання
- 14.9 Тести
- 15. Дискретні системи автоматичного керування
- 15.1. Загальні відомості
- 15.2. Структура й класифікація імпульсних систем
- 15.3. Математичний апарат дослідження дискретних систем
- 15.4. Передатні функції розімкнутих імпульсних систем
- 15.5 Структурні схеми і передатні функції
- 15.6. Частотні характеристики імпульсних систем
- 15.7 Стійкість імпульсних систем
- 15.8. Перехідні процеси в імпульсних системах
- Перехідний процес
- 15.9 Точність і корекція імпульсних систем
- 15.10. Опис дискретних систем у просторі станів
- 15.11 Тренувальні завдання
- 15.12 Тести
- 16 Оптимальне керування динамічними системами
- 16.1. Основні поняття систем оптимального керування
- 16.2. Завдання синтезу оптимальних систем
- 16.3. Самонастроювальні і динамічні системи, що самонавчаються, оптимального керування
- 16.4 Тести
- Загальна характеристика об'єктів і систем автоматичного керування.
- 1.1 Короткі історичні відомості 3
- Регулярні сигнали і їхні характеристики
- Математичний опис автоматичних систем.
- Частотний метод дослідження лінійних систем
- Структурний аналіз лінійних систем
- 6. Стійкість лінійних систем
- 7. Синтез стійких систем з необхідним запасом стійкості
- 8. Якість процесів регулювання і методи її аналізу
- 9. Методи розрахунку настроювальних параметрів для сар
- 10.Методи лінеаризації характеристик нелінійних систем
- 11.Дослідження нелінійних систем методом фазового простору
- 14. Аналіз і синтез сау у просторі станів
- 15. Дискретні системи автоматичного керування
- 16. Оптимальне керування динамічними системами