9.3 Алгоритм розрахунку області настройок типових регуляторів
методом РАФХ
Метод розширених частотних характеристик описаний в розділі 7 і використаний при синтезі систем із заданим запасом стійкості..
Методика розрахунку оптимальних настройок регуляторів методом РАФХ аналогічна. Під оптимальними настройками в даному методі розуміють настройки регулятора, що забезпечують заданий ступінь коливальності тзадпроцесу регулювання при мінімумі інтегрального квадратичного критерія Jкв. У зв'язку з цим розрахунок настроювальних параметрів регулятора розпадається на два етапи: визначення настройок, що забезпечують заданий запас стійкості - заданий ступінь коливальності , і визначення настройок, що забезпечують якість регулювання, що оцінюється по інтегральному квадратичному критерію.
Перший етап детально описаний в розділі 7. Розрахунок регуляторів з одним настроювальним параметром (П- і І-регулятори) виконується в один (перший) етап. Для регуляторів з двома настроювальними параметрами на першому етапі розраховується лінія рівного ступеня коливальності в площині параметрів настройок , . На другому етапі необхідно вибрати тільки одну пару настройок , , відповідну мінімальному значенню інтегрального квадратичного критерію якості. Розрахунок цього критерію для різних процесів регулювання показує, що його мінімуму для ПІ-регулятора відповідає точка на кривій рівного ступеня коливальності, розташована декілька правіше за вершину (рис.9.1, а). Такою точкою є точка 3. Різним точкам на кривій рівного ступеня коливальності відповідають різні процеси регулювання (рис. 9.1, б).
У точці 1 відсутня пропорційна складова, регулятор працює як інтегральний, особливістю якого є найбільша динамічна похибка. В точках 2 і 3 регулятор працює як ПІ-регулятор, причому з порівняння цих двох процесів видно, що з погляду заданої якості регулювання перехідний процес в точці 3 краще, ніж в точці 2. Оскільки при русі уздовж кривої рівного ступеня коливальності пропорційна складова зростає, зростає робоча частота, отже, зменшується динамічна похибка регулювання, але з деякого моменту (точка 2) починає зменшуватися і величина настройки інтегральної складової So, яка визначає швидкість усунення статичної похибки. Чим менше величина So, тим повільніше вибирається статична похибка, тобто спостерігається затягування "хвоста" перехідного
Рис. 9.1 Вибір оптимальних настройок ПІ-регулятор:
а - крива рівного ступеня коливальності; б - графіки перехідних
процесів регулювання для різних настройок ПІ-регулятора.
процесу (точка 4). У точці 5 відсутня інтегральна складова, регулятор працює як пропорційний, його особливістю є наявність статичної похибки регулювання.
Оптимальні настройки регулятора и розраховуються по мінімуму . Для їх вибору необхідно розраховувати критерій для всіх пар настройок регулятора уздовж кривої рівного ступеня коливальності. Ця процедура трудомістка і на практиці удаються до інженерної методики визначення місцезнаходження точки 3. Робоча частота визначається, виходячи із співвідношень
або ,
де - частота, відповідна вершині кривої ; - частота, відповідна пропорційному закону регулювання.
Після цього по формулах (7.18) розраховуються , .
Процедура розрахунку оптимальних параметрів настройок ПД-регулятора аналогічна розрахунку ПІ-регулятор. У площині параметрів і будується крива заданого ступеня коливальності (рис. 9.2, а).
Рис. 9.2 Вибір оптимальних настройок ПД-регулятора:
а - лінія рівного ступеня коливальності; б - графіки процесів регулювання для різних настройок ПД-регулятора.
При русі упродовж кривої управо збільшується диференціональна складова і частота. Отже, чим більше , тим менше динамічна похибка регулювання. Величина настройки, пропорційна складовій , спочатку збільшується, а потім зменшується, причому, чим більше , тим менше статична похибка. Вищесказане добре ілюструється графіками процесів регулювання для різних настройок регуляторів, зображених на рис. 9.2, б.
Оптимальні настройки * , * визначаються з умови мінімуму , якій на кривій рівного ступеня коливальності відповідає точка, розташована на її вершині.
- Основи теорії автоматичного управління
- Частина 1. Лінійні системи
- 1. Загальна характеристика об'єктів і систем автоматичного керування
- 1.1 Короткі історичні відомості
- 1.2 Основні поняття і визначення
- 1.3 Принципи регулювання
- 1.4 Приклади систем автоматичного регулювання в хімічній технології
- 1.5 Класифікація систем автоматичного керування
- 1.6 Тренувальні завдання
- 1.7 Тести
- 2 Регулярні сигнали і їх характеристики
- 2.1 Визначення регулярного сигналу
- 2.2 Основні типи регулярних сигналів. Періодичні і безперервні сигнали
- Перетворення Фурье, його основні властивості
- Спектри сигналів
- 2.5 Розподіл енергії в спектрах сигналів
- Практична ширина спектру і спотворення сигналів
- 2.7 Представлення сигналів
- 2.8 Сигнали. Їх види
- 2.9 Тренувальні завдання
- 2.10 Тести
- 3.Математичний опис автоматичних систем
- 3.1 Основні способи математичного опису. Рівняння руху.
- 3.2 Приклади рівнянь об'єктів керування
- 3.2.1 Гідравлічний резервуар
- 3.2.2 Електрична ємкість
- 3.2.3 Хімічний реактор повного перемішування
- 3.3 Визначення лінійної стаціонарної системи. Принцип суперпозиції
- 3.4 Динамічне поводження лінійних систем
- 3.5 Динамічні процеси в системах
- 3.6 Перехідна і вагова функції
- 3.6.1 Перехідна функція
- 3.6.2 Вагова функція
- 3.7 Інтеграл Дюамеля
- Перетворення Лапласа
- Визначення перетворення Лапласа
- Властивості перетворення Лапласа
- Рішення диференціальних рівнянь
- Розбиття на прості дроби
- Передаточна функція
- 3.10 Тренувальні завдання
- 3.11 Тести
- 4 Частотний метод дослідження лінійних систем
- 4.1 Елементи теорії функції комплексного змінного
- 4.2 Частотні характеристики
- 4.3 Зв'язок перетворень Лапласа і Фур’є
- 4.4 Зв'язок диференціального рівняння з частотними характеристиками
- 4.5 Фізичний сенс частотних характеристик
- 4.6 Мінімально-фазові системи
- 4.7 Поняття про логарифмічні частотні характеристики
- 4.8 Взаємозв'язок динамічних характеристик
- 4.9 Тренувальні завдання
- 4.10 Тести
- 5 Структурний аналіз лінійних систем
- 5.1 Ланка направленої дії
- 5.2 Типові динамічні ланки
- 5.2.1 Підсилювальна ланка
- 5.2.2 Інтегруюча ланка
- 5.2.6 Ланка чистого запізнювання
- 5.2.7 Аперіодична ланка першого порядку
- 5.2.8Ланка щоінерційно-форсуює
- 5.2.9 Аперіодична ланка другого порядку
- 5.2.10 Коливальна ланка
- 5.2.11 Особливі ланки
- 5.3 Основні способи з'єднання ланок
- 5.3.1 Структурні схеми
- 5.3.2 Паралельне з'єднання ланок
- 5.3.3 Послідовне з'єднання ланок
- 5.3.4 З'єднання із зворотним зв'язком
- 5.3.5 Передаточні функції замкнутої системи
- 5.3.6 Правила перетворення структурних схем
- 5.3.7 Формула мейсона
- 5.4 Типові закони регулювання
- 5.4.1 Пропорційний закон регулювання
- 5.4.2 Інтегральний закон регулювання
- 5.4.3 Диференційний закон регулювання
- 5.4.4 Пропорційно-диференційний закон регулювання
- 5.4.5 Пропорційно-інтегральний закон регулювання
- 5.4.6 Пропорційно-інтегрально-диференційний закон регулювання
- 5.5 Тренувальні завдання
- 5.6 Тести
- 6 Стійкість лінійних систем
- 6.1 Поняття стійкості і її визначення
- 6.2 Стійкість лінійного диференціального рівняння з постійнимикоефіцієнтами
- 6.3 Зображення руху у фазовому просторі
- 6.3.1 Поняття фазового простору
- 6.3.2 Фазові портрети лінійних систем другого порядку
- 6.4 Поняття стійкості руху
- 6.5 Основні види стійкості
- 6.5.1 Орбітальна стійкість
- 6.5.2 Стійкість по ляпунову
- 6.5.3 Асимптотична стійкість
- 6.6 Необхідна умова стійкості
- 6.7 Алгебраїчні критерії стійкості
- 6.7.1 Критерій стійкості рауса
- 6.7.2 Критерій стійкості гурвіця
- 6.7.3 Критерій стійкості л’єнара-шипаро
- 6.7.4 Стійкість і стала похибка
- 6.7.5 Область стійкості
- 6.8 Частотні критерії стійкості
- 6.8.1 Принцип аргументу
- 6.8.2 Критерій міхайлова
- 6.8.3 Критерій найквіста
- 6.8.4 Застосування критеріїв для дослідження стійкості систем
- 6.8.5 Аналіз стійкості по логарифмічних частотних характеристиках
- 6.9Тренувальні завдання
- 6.10 Тести
- 7. Синтез стійких систем з необхідним запасом стійкості
- 7.1 Стійкість ланок і систем. Запас стійкості.
- 7.2 Межі стійкості систем
- 7.2.1 Межа стійкості для систем з пі-регулятором
- 7.2.2 Межа стійкості для систем з пі-регулятором
- 7.2.3 Межі стійкості для системи з і-регулятором
- 7.3 Запас стійкості і його оцінка
- 7.3.1 Кореневі методи оцінки запасу стійкості
- 7.3.2 Частотні методи оцінки запасу стійкості
- 7.4 Розширені частотні характеристики
- 7.5 Аналіз систем на запас стійкості
- 7.6 Синтез систем з необхідним запасом стійкості
- Система с п-регулятором
- 7.6.2 Система с і-регулятором
- 7.6.3 Система с пі-регулятором
- 7.6.4 Система з пд-регулятором
- 7.7 Використання логарифмічних частотних характеристик для забезпечення стійкості і заданого запасу стійкості
- 7.8 Структурно-стійкі системи
- 7.9 Малі параметри систем і їх вплив на стійкість
- 7.10 Використання корегуючих пристроїв для забезпечення стійкості і запасу стійкості
- 7.10.1 Послідовна корекція
- 7.10.2 Паралельна корекція
- 7.11 Тренувальні завдання
- 7.12 Тести
- 8.Якість процесів регулювання і методи її аналіза
- 8.1 Показники якості регулювання
- 8.1.1 Прямі показники якості регулювання
- 8.1.2 Непрямі показники якості регулювання
- 8.1.3 Інтегральні критерії якості регулювання
- 8.1.3.1 Лінійний інтегральний критерій
- 8.1.3.2 Модульний інтегральний критерій
- Інтегральний квадратичний критерій
- 8.2 Частотні методи аналізу якості регулювання
- 8.2.1 Залежність між перехідною і частотними характеристиками
- 8.2.2 Властивості дійсно-частотних характеристик і відповідних їмперехідних процесів
- 8.3 Поняття про чутливість систем автоматичного регулювання
- Тренувальні завдання
- 8.5 Тести
- 9 Методи розрахунку настроювальних параметрів для сар
- 9.1 Постановка задачі
- 9.2 Вибір оптимальних настройок регуляторів методом незгасаючих коливань
- 9.3 Алгоритм розрахунку області настройок типових регуляторів
- 9.4 Графоаналітичний метод розрахунку
- 9.5 Тренувальні завдання
- 9.6 Тести
- Частина 2 нелінійні системи
- 10 Методи лінеаризації характеристик нелінійних систем
- 10.1 Особливості нелінійних систем
- 10.2 Типові нелінійні елементи систем керування
- 10.3 Методи лінеаризації
- 10.3.1 Розкладання в ряд Тейлора
- 10.3.2 Гармонійна лінеаризація
- 10.3.3 Вібраційна лінеаризація
- 10.4 Тренувальні завдання
- 10.5 Тести
- 11 Дослідження нелінійних систем методом фазового простору
- 11.1 Загальні відомості про метод фазового простору
- Фазові портрети нелінійних систем другого порядку
- Методи побудови фазових портретів
- 11.3.1 Інтегрування рівнянь фазових траєкторій
- 11.3.2 Метод ізоклін
- 11.3.3 Метод припасовування
- 11.3.4 Метод зшивання
- 11.4 Тренувальні завдання
- 11.5 Тести
- 12 Аналіз нелінійних систем на стійкість і якість
- Основні види стійкості нелінійних систем
- Методи дослідження стійкості нелінійних систем
- 12.2.1 Перший метод Ляпунова
- 12.2.2 Другий метод Ляпунова
- 12.2.2.1 Поняття про знаковизначенні, знакопостійні і знакозмінні функції
- 12.2.2.2 ФункціяЛяпунова
- 12.2.2.3 Теореми Ляпунова
- 12.3 Методи побудови функції Ляпунова
- 12.3.1 Функція Ляпунова у вигляді квадратичних форм
- 12.3.2 Побудова функції Ляпунова методом г. Сеге
- 12.3.3 Побудова функції Ляпунова методом д. Шульца
- 12.3.4 Побудова функції Ляпунова методом Лур’є – Постникова
- 12.4 Приклади побудови функцій Ляпунова
- 12.5 Абсолютна стійкость по критерію Попова
- 12.6 Методи визначення якості регулювання нелінійних систем
- 12.7 Тренувальні завдання
- 12.8 Тести
- 13 Автоколивання в нелінійних системах
- 13.1 Режим автоколивань в нелінійних системах
- 13.2 Методи дослідження автоколивань в нелінійних системах
- 13.2.1 Критерій Бендіксона
- 13.2.2 Метод гармонійного балансу
- 13.3 Тренувальні завдання
- 13.4 Тести
- 14.1. Опис систем у просторі станів
- 14.2. Структура рішення рівнянь змінні стану
- 14.3. Характеристики систем у просторі станів
- 14.4. Нормальна форма рівнянь у просторі станів
- 14.5. Керування по стану. Системи керування
- 14.6. Оцінювання координат стану систем
- 14.7. Прямий кореневий метод синтезу систем керування
- 14.8 Тренувальні завдання
- 14.9 Тести
- 15. Дискретні системи автоматичного керування
- 15.1. Загальні відомості
- 15.2. Структура й класифікація імпульсних систем
- 15.3. Математичний апарат дослідження дискретних систем
- 15.4. Передатні функції розімкнутих імпульсних систем
- 15.5 Структурні схеми і передатні функції
- 15.6. Частотні характеристики імпульсних систем
- 15.7 Стійкість імпульсних систем
- 15.8. Перехідні процеси в імпульсних системах
- Перехідний процес
- 15.9 Точність і корекція імпульсних систем
- 15.10. Опис дискретних систем у просторі станів
- 15.11 Тренувальні завдання
- 15.12 Тести
- 16 Оптимальне керування динамічними системами
- 16.1. Основні поняття систем оптимального керування
- 16.2. Завдання синтезу оптимальних систем
- 16.3. Самонастроювальні і динамічні системи, що самонавчаються, оптимального керування
- 16.4 Тести
- Загальна характеристика об'єктів і систем автоматичного керування.
- 1.1 Короткі історичні відомості 3
- Регулярні сигнали і їхні характеристики
- Математичний опис автоматичних систем.
- Частотний метод дослідження лінійних систем
- Структурний аналіз лінійних систем
- 6. Стійкість лінійних систем
- 7. Синтез стійких систем з необхідним запасом стійкості
- 8. Якість процесів регулювання і методи її аналізу
- 9. Методи розрахунку настроювальних параметрів для сар
- 10.Методи лінеаризації характеристик нелінійних систем
- 11.Дослідження нелінійних систем методом фазового простору
- 14. Аналіз і синтез сау у просторі станів
- 15. Дискретні системи автоматичного керування
- 16. Оптимальне керування динамічними системами