2.8 Сигнали. Їх види
Найчастіше в теорії автоматичного управління використовуються наступні сигнали.
1 Одиничний стрибок (рис. 2.2). 1(t) називається також функцією Хевісайда.
, | (2.16) |
Строго кажучи, функція Хевісайда фізично не реалізовується, проте, якщо, наприклад, на досліджуваному об'єкті різко відкрити вентиль, внаслідок чого витрата речовини, що подається, зміниться стрибком з до то говорять, що на вході об'єкту реалізований стрибкоподібний сигнал величиною і якщо остання різниця рівна одиниці, то на вході реалізується одиничний стрибок.
Спектральна характеристика для одиничного стрибка:
. | (2.16) |
2 Одинична імпульсна функція – дельта-функція (мал. 2.3) – це функція, що задовольняє наступним умовам:
,
| (2.17) |
|
|
Рис. 2.2Одиничний стрибок | Рис. 2.3Одиничний імпульс |
Дельта-функцію називають також функцією Дираку, вона відноситься до класу сингулярних функцій. Цю функцію, що також фізичноне реалізовується, можна представити як імпульс нескінченно малої тривалості і нескінченно великої амплітуди, тобто як межа, до якої наближується прямокутний імпульс з підставою і площею, рівній одиниці (рис. 2.4, а), якщо так, щоб площа імпульсу зберігалася рівній одиниці. Також δ-функцию можна представити як межу деякої функції (рис. 2.4, б):
. | (2.18) |
|
Рис. 2.4Представлення дельта-функції: а – прямокутний імпульс; б – δ(у, t) -функція |
До основних властивостей дельта-функції можна віднести наступну рівність:
| (2.19) |
δ-функція є парною функцією:
, | (2.20) |
| (2.21) |
тобто з безперервної функції можна "вирізувати" одну ординату.
Останнє співвідношення, використовуючи розглянуті вже властивості δ-функції, доводиться таким чином:
|
|
Спектральна характеристика дельта-функції: .
Між функцією Хевісайда і функцією Дираку існує зв'язок, що виражається співвідношенням
| (2.22) |
На практиці вважається, що на вхід об'єкту подана δ-функция, якщо час дії прямокутного імпульсу набагато менше часу перехідного процесу.
3 Гармонійний сигнал (рис. 2.5, а)
| (2.23) |
використовується при дослідженні систем автоматичного регулювання частотними методами.
Синусоїдальний гармонійний сигнал можна представити як обертання вектора довжиною навколо початку координат (рис. 2.5, б) з деякою кутовою швидкістю рад/с.
Гармонійний сигнал характеризується такими параметрами, як амплітуда – ; період – ; фаза – .
|
Рис. 2.5Гармонійний сигнал: а – звичайний сигнал; б – представлення гармонійного сигналу обертанням вектора; у – гармонійний сигнал із зрушенням фази |
Між періодом і кутовою швидкістю справедливі співвідношення
| (2.24) |
Якщо коливання починаються не з нуля, то вони характеризуються фазою коливань (рис. 2.5, в), яка в часовій області характеризується відрізком але зазвичай фазу виражають в радіанах – (рис. 2.5, б). Переклад здійснюється по формулі
| (2.25) |
На практиці для отримання гармонійного сигналу використовується генератор синусоїдальних коливань.
4 Зсунуті елементарні функції.
До цих функцій відносяться функції Хевісайда і Дираку із запізнюванням, тобто і (рис. 2.6),
|
Рис. 2.6Зсунені елементарні функції |
причому .
Всі властивості δ-функціїзберігаються, але записуються у вигляді:
; |
; |
. |
5 Сигнал довільної форми – (рис. 2.10, а).
Будь-який сигнал довільноїформиможнапредставити за допомогоюδ-функції. З цією метою виділяється довільний момент часу і будується стовпчик заввишки (рис. 2.7, б)відповідний значенню сигналу у момент часу і основою .
Цей імпульс можна виразити через наближену дельта-функцію –
|
|
тобто .
|
Рис. 2.7Сигнал довільної форми: а – вхідний безперервний сигнал; б – імпульс; в – суперпозиція імпульсів, що визначають сигнал. |
Замінюючи функцію x(t) набором імпульсів (мал. 2.7, в), можна записати: .
Якщо тепер то
| (2.26) |
Сигнал довільної форми можна представити і через одиничні функції, для чого вираз (2.26) слід проінтегрувати по частинах, використовуючи співвідношення внаслідок чого отримують наступне співвідношення
| (2.27) |
- Основи теорії автоматичного управління
- Частина 1. Лінійні системи
- 1. Загальна характеристика об'єктів і систем автоматичного керування
- 1.1 Короткі історичні відомості
- 1.2 Основні поняття і визначення
- 1.3 Принципи регулювання
- 1.4 Приклади систем автоматичного регулювання в хімічній технології
- 1.5 Класифікація систем автоматичного керування
- 1.6 Тренувальні завдання
- 1.7 Тести
- 2 Регулярні сигнали і їх характеристики
- 2.1 Визначення регулярного сигналу
- 2.2 Основні типи регулярних сигналів. Періодичні і безперервні сигнали
- Перетворення Фурье, його основні властивості
- Спектри сигналів
- 2.5 Розподіл енергії в спектрах сигналів
- Практична ширина спектру і спотворення сигналів
- 2.7 Представлення сигналів
- 2.8 Сигнали. Їх види
- 2.9 Тренувальні завдання
- 2.10 Тести
- 3.Математичний опис автоматичних систем
- 3.1 Основні способи математичного опису. Рівняння руху.
- 3.2 Приклади рівнянь об'єктів керування
- 3.2.1 Гідравлічний резервуар
- 3.2.2 Електрична ємкість
- 3.2.3 Хімічний реактор повного перемішування
- 3.3 Визначення лінійної стаціонарної системи. Принцип суперпозиції
- 3.4 Динамічне поводження лінійних систем
- 3.5 Динамічні процеси в системах
- 3.6 Перехідна і вагова функції
- 3.6.1 Перехідна функція
- 3.6.2 Вагова функція
- 3.7 Інтеграл Дюамеля
- Перетворення Лапласа
- Визначення перетворення Лапласа
- Властивості перетворення Лапласа
- Рішення диференціальних рівнянь
- Розбиття на прості дроби
- Передаточна функція
- 3.10 Тренувальні завдання
- 3.11 Тести
- 4 Частотний метод дослідження лінійних систем
- 4.1 Елементи теорії функції комплексного змінного
- 4.2 Частотні характеристики
- 4.3 Зв'язок перетворень Лапласа і Фур’є
- 4.4 Зв'язок диференціального рівняння з частотними характеристиками
- 4.5 Фізичний сенс частотних характеристик
- 4.6 Мінімально-фазові системи
- 4.7 Поняття про логарифмічні частотні характеристики
- 4.8 Взаємозв'язок динамічних характеристик
- 4.9 Тренувальні завдання
- 4.10 Тести
- 5 Структурний аналіз лінійних систем
- 5.1 Ланка направленої дії
- 5.2 Типові динамічні ланки
- 5.2.1 Підсилювальна ланка
- 5.2.2 Інтегруюча ланка
- 5.2.6 Ланка чистого запізнювання
- 5.2.7 Аперіодична ланка першого порядку
- 5.2.8Ланка щоінерційно-форсуює
- 5.2.9 Аперіодична ланка другого порядку
- 5.2.10 Коливальна ланка
- 5.2.11 Особливі ланки
- 5.3 Основні способи з'єднання ланок
- 5.3.1 Структурні схеми
- 5.3.2 Паралельне з'єднання ланок
- 5.3.3 Послідовне з'єднання ланок
- 5.3.4 З'єднання із зворотним зв'язком
- 5.3.5 Передаточні функції замкнутої системи
- 5.3.6 Правила перетворення структурних схем
- 5.3.7 Формула мейсона
- 5.4 Типові закони регулювання
- 5.4.1 Пропорційний закон регулювання
- 5.4.2 Інтегральний закон регулювання
- 5.4.3 Диференційний закон регулювання
- 5.4.4 Пропорційно-диференційний закон регулювання
- 5.4.5 Пропорційно-інтегральний закон регулювання
- 5.4.6 Пропорційно-інтегрально-диференційний закон регулювання
- 5.5 Тренувальні завдання
- 5.6 Тести
- 6 Стійкість лінійних систем
- 6.1 Поняття стійкості і її визначення
- 6.2 Стійкість лінійного диференціального рівняння з постійнимикоефіцієнтами
- 6.3 Зображення руху у фазовому просторі
- 6.3.1 Поняття фазового простору
- 6.3.2 Фазові портрети лінійних систем другого порядку
- 6.4 Поняття стійкості руху
- 6.5 Основні види стійкості
- 6.5.1 Орбітальна стійкість
- 6.5.2 Стійкість по ляпунову
- 6.5.3 Асимптотична стійкість
- 6.6 Необхідна умова стійкості
- 6.7 Алгебраїчні критерії стійкості
- 6.7.1 Критерій стійкості рауса
- 6.7.2 Критерій стійкості гурвіця
- 6.7.3 Критерій стійкості л’єнара-шипаро
- 6.7.4 Стійкість і стала похибка
- 6.7.5 Область стійкості
- 6.8 Частотні критерії стійкості
- 6.8.1 Принцип аргументу
- 6.8.2 Критерій міхайлова
- 6.8.3 Критерій найквіста
- 6.8.4 Застосування критеріїв для дослідження стійкості систем
- 6.8.5 Аналіз стійкості по логарифмічних частотних характеристиках
- 6.9Тренувальні завдання
- 6.10 Тести
- 7. Синтез стійких систем з необхідним запасом стійкості
- 7.1 Стійкість ланок і систем. Запас стійкості.
- 7.2 Межі стійкості систем
- 7.2.1 Межа стійкості для систем з пі-регулятором
- 7.2.2 Межа стійкості для систем з пі-регулятором
- 7.2.3 Межі стійкості для системи з і-регулятором
- 7.3 Запас стійкості і його оцінка
- 7.3.1 Кореневі методи оцінки запасу стійкості
- 7.3.2 Частотні методи оцінки запасу стійкості
- 7.4 Розширені частотні характеристики
- 7.5 Аналіз систем на запас стійкості
- 7.6 Синтез систем з необхідним запасом стійкості
- Система с п-регулятором
- 7.6.2 Система с і-регулятором
- 7.6.3 Система с пі-регулятором
- 7.6.4 Система з пд-регулятором
- 7.7 Використання логарифмічних частотних характеристик для забезпечення стійкості і заданого запасу стійкості
- 7.8 Структурно-стійкі системи
- 7.9 Малі параметри систем і їх вплив на стійкість
- 7.10 Використання корегуючих пристроїв для забезпечення стійкості і запасу стійкості
- 7.10.1 Послідовна корекція
- 7.10.2 Паралельна корекція
- 7.11 Тренувальні завдання
- 7.12 Тести
- 8.Якість процесів регулювання і методи її аналіза
- 8.1 Показники якості регулювання
- 8.1.1 Прямі показники якості регулювання
- 8.1.2 Непрямі показники якості регулювання
- 8.1.3 Інтегральні критерії якості регулювання
- 8.1.3.1 Лінійний інтегральний критерій
- 8.1.3.2 Модульний інтегральний критерій
- Інтегральний квадратичний критерій
- 8.2 Частотні методи аналізу якості регулювання
- 8.2.1 Залежність між перехідною і частотними характеристиками
- 8.2.2 Властивості дійсно-частотних характеристик і відповідних їмперехідних процесів
- 8.3 Поняття про чутливість систем автоматичного регулювання
- Тренувальні завдання
- 8.5 Тести
- 9 Методи розрахунку настроювальних параметрів для сар
- 9.1 Постановка задачі
- 9.2 Вибір оптимальних настройок регуляторів методом незгасаючих коливань
- 9.3 Алгоритм розрахунку області настройок типових регуляторів
- 9.4 Графоаналітичний метод розрахунку
- 9.5 Тренувальні завдання
- 9.6 Тести
- Частина 2 нелінійні системи
- 10 Методи лінеаризації характеристик нелінійних систем
- 10.1 Особливості нелінійних систем
- 10.2 Типові нелінійні елементи систем керування
- 10.3 Методи лінеаризації
- 10.3.1 Розкладання в ряд Тейлора
- 10.3.2 Гармонійна лінеаризація
- 10.3.3 Вібраційна лінеаризація
- 10.4 Тренувальні завдання
- 10.5 Тести
- 11 Дослідження нелінійних систем методом фазового простору
- 11.1 Загальні відомості про метод фазового простору
- Фазові портрети нелінійних систем другого порядку
- Методи побудови фазових портретів
- 11.3.1 Інтегрування рівнянь фазових траєкторій
- 11.3.2 Метод ізоклін
- 11.3.3 Метод припасовування
- 11.3.4 Метод зшивання
- 11.4 Тренувальні завдання
- 11.5 Тести
- 12 Аналіз нелінійних систем на стійкість і якість
- Основні види стійкості нелінійних систем
- Методи дослідження стійкості нелінійних систем
- 12.2.1 Перший метод Ляпунова
- 12.2.2 Другий метод Ляпунова
- 12.2.2.1 Поняття про знаковизначенні, знакопостійні і знакозмінні функції
- 12.2.2.2 ФункціяЛяпунова
- 12.2.2.3 Теореми Ляпунова
- 12.3 Методи побудови функції Ляпунова
- 12.3.1 Функція Ляпунова у вигляді квадратичних форм
- 12.3.2 Побудова функції Ляпунова методом г. Сеге
- 12.3.3 Побудова функції Ляпунова методом д. Шульца
- 12.3.4 Побудова функції Ляпунова методом Лур’є – Постникова
- 12.4 Приклади побудови функцій Ляпунова
- 12.5 Абсолютна стійкость по критерію Попова
- 12.6 Методи визначення якості регулювання нелінійних систем
- 12.7 Тренувальні завдання
- 12.8 Тести
- 13 Автоколивання в нелінійних системах
- 13.1 Режим автоколивань в нелінійних системах
- 13.2 Методи дослідження автоколивань в нелінійних системах
- 13.2.1 Критерій Бендіксона
- 13.2.2 Метод гармонійного балансу
- 13.3 Тренувальні завдання
- 13.4 Тести
- 14.1. Опис систем у просторі станів
- 14.2. Структура рішення рівнянь змінні стану
- 14.3. Характеристики систем у просторі станів
- 14.4. Нормальна форма рівнянь у просторі станів
- 14.5. Керування по стану. Системи керування
- 14.6. Оцінювання координат стану систем
- 14.7. Прямий кореневий метод синтезу систем керування
- 14.8 Тренувальні завдання
- 14.9 Тести
- 15. Дискретні системи автоматичного керування
- 15.1. Загальні відомості
- 15.2. Структура й класифікація імпульсних систем
- 15.3. Математичний апарат дослідження дискретних систем
- 15.4. Передатні функції розімкнутих імпульсних систем
- 15.5 Структурні схеми і передатні функції
- 15.6. Частотні характеристики імпульсних систем
- 15.7 Стійкість імпульсних систем
- 15.8. Перехідні процеси в імпульсних системах
- Перехідний процес
- 15.9 Точність і корекція імпульсних систем
- 15.10. Опис дискретних систем у просторі станів
- 15.11 Тренувальні завдання
- 15.12 Тести
- 16 Оптимальне керування динамічними системами
- 16.1. Основні поняття систем оптимального керування
- 16.2. Завдання синтезу оптимальних систем
- 16.3. Самонастроювальні і динамічні системи, що самонавчаються, оптимального керування
- 16.4 Тести
- Загальна характеристика об'єктів і систем автоматичного керування.
- 1.1 Короткі історичні відомості 3
- Регулярні сигнали і їхні характеристики
- Математичний опис автоматичних систем.
- Частотний метод дослідження лінійних систем
- Структурний аналіз лінійних систем
- 6. Стійкість лінійних систем
- 7. Синтез стійких систем з необхідним запасом стійкості
- 8. Якість процесів регулювання і методи її аналізу
- 9. Методи розрахунку настроювальних параметрів для сар
- 10.Методи лінеаризації характеристик нелінійних систем
- 11.Дослідження нелінійних систем методом фазового простору
- 14. Аналіз і синтез сау у просторі станів
- 15. Дискретні системи автоматичного керування
- 16. Оптимальне керування динамічними системами