Аппаратурная форма линии спектрометра
При спектрометрии моноэнергетического γ-излучения в многоканальном анализаторе (или другом регистрирующем устройстве) создается амплитудное распределение поступающих от детектора (через усилитель) импульсов, которое обычно называют аппаратурной линией. Аппаратурная форма линии сцинтилляционного спектрометра имеет достаточно сложный характер, что связано с особенностями взаимодействия фотонов с веществом. С помощью калибровки (см. далее) амплитудная шкала связывается с поглощаемой в кристалле энергией излучения.
Фотопик. Наиболее заметной и важной часть амплитудного распределения импульсов при спектрометрии моноэнергетических фотонов (форма линии) является фотопик (рис. 2.11). Он соответствует полному поглощению энергии фотона в кристалле. Положение максимума этого пика в энергетической шкале спектрометра определяет энергию измеряемого излучении.
Рис. 2.11. Распределение амплитуд импульсов при спектрометрии сцинтилляционным спектрометром с кристаллом NaI(Tl) размером 2,5 х 2,5 см2 моноэнергетических фотонов с энергией Eγ = 0,765 МэВ
Помимо фотопоглощения, тот же результат может дать многократное рассеяние фотонов в кристалле, так как часть γ-квантов, первоначально претерпевших в кристалле многократное рассеяние, может затем испытать фотоэлектрическое поглощение. Спектр импульсов, обусловленных многократным рассеянием с последующим фотопоглощением, также имеет форму пика и неотделим от спектра фотоэлектронов. Поэтому фотопик часто называют пиком полной энергии. Площадь под этим пиком служит мерой интенсивности излучения. Вклад многократного рассеяния в пик полной энергии увеличивается с увеличением размера кристалла и зависит от коллимации падающего излучения и его энергии. Для характеристики спектрометра с этой точки зрения вводится величина, называемая фотоэффективностью спектрометра. Она определяется как отношение числа импульсов, зарегистрированных в пике полной энергии к числу фотонов, упавших за тоже время на поверхность кристалла. Произведение фотоэффективности на геометрическую эффективность определяет светосилу спектрометра.
Комптоновское плато (распределение). Часть фотонов, падающих на кристалл, испытает комптоновское рассеяние и после него выходит из кристалла взаимодействий. Энергия, передаваемая при этом электронам и поглощаемая в кристалле, зависит от угла рассеяния. В результате образуется так называемое комптоновское распределение или плато (рис. 2.11 и 2.12). Максимальная энергия комптоновских электронов соответствует рассеянию фотона на 180о и равна
(2.4)
где Eβ и Eγ – энергии комптоновского электрона и начальная энергия фотона в единицах mec2. Эта максимальная энергия соответствует высокоэнергетическому краю распределения
При небольших размерах кристалла для вычисления спектра комптоновских электронов для фотонов с энергией не менее 150 кэВ в первом приближении можно использовать формулу Клейна-Нишины-Тамма:
(2.5)
где dσ/dE – число комптоновских электронов (на электрон мишени) с энергией Eβ на единичный энергетический интервал;
ro = 2,818·10-13 – классический радиус электрона.
Согласно формуле (2.5) комптоновское распределение должно иметь резкий подъем вблизи своей максимальной границы. Однако в аппаратурной форме линии этот подъем сглаживается за счет многократного рассеяния фотонов и конечного энергетического разрешения спектрометра.
Обратное рассеяние. В аппаратурном спектре высокоэнергетичных фотонов в области энергий 150 ÷ 200 кэВ над непрерывным комптоновским плато имеется небольшой пик (см. рис. 2.11), связанный с процессом обратного рассеяния фотонов. Близлежащие к кристаллу части ФЭУ и конструкционные элементы являются источниками рассеянного излучения, часть которого может быть зарегистрирована детектором.
Пики утечки. Кроме фотонов, выходящих из кристалла после комптоновского взаимодействия, имеются и другие пути выхода из кристалла, которые приводят к образованию в спектре дискретных пиков. Эти пики называют пиками утечки. Такой дополнительный пик создается при фотоэлектрическом поглощении фотонов. Сопровождающее этот эффект характеристическое излучение имеет изотропное распределение и в основном поглощается в кристалле. Однако часть характеристических фотонов, образующихся около поверхности кристалла, покидает кристалл без взаимодействия. Это приводит к образованию небольшого дополнительного пика, называемого йодным пиком утечки и отстоящего от фотопика на расстоянии ~ 28 кэВ (рис. 2.12,а). Заметен этот пик только при регистрации фотонов с энергией ≤ 100 кэВ.
Рис. 2.12. Особенности аппаратурной формой линии сцинтилляционного спектрометра, связанные с утечкой характеристического излучения йода (а) и характеристическим излучением свинцовой защиты (б)
Другой вид пиков утечки возникает при регистрации высокоэнергетических фотонов (Eγ > 1,02 МэВ). При этих энергия возможно образование пар и один или два фотона с энергией 511 кэВ, образующиеся в результате аннигиляции позитрона, могут покинуть кристалл без взаимодействия. Как следствие, образуются два дополнительных пика, отстоящие от фотопика на расстоянии 0,511 и 1,02 МэВ.
Характеристическое излучение. Обычно большинство сцинтилляционных детекторов для уменьшения фона окружаются свинцовой защитой. Фотоэлектрическое поглощение фотонов в свинце может сопровождаться испусканием характеристического излучения с энергией ~ 80 кэВ. Если это излучение образуется близко к внутренней поверхности свинцовой защиты и недалеко от кристалла, то имеется вероятность его регистрации спектрометром. Отсюда и возможное появление в спектре пика вблизи энергии 80 кэВ (рис. 2.12.б).
Характеристическое излучение испускается также радионуклидами, распад которых происходит через захват электрона. Тогда на внутренней оболочка образуется вакансия и ее заполнение сопровождается эмиссией характеристического излучения. В результате в спектре появляются дополнительный пик, который при небольшой вероятности распада через испускание γ-излучения может оказаться даже доминирующим.
Суммарные пики совпадения. Если два фотона поглощаются в кристалле в пределах короткого временного интервала (меньше временного разрешения спектрометра), то в аппаратурном спектре появляются импульсы, амплитуда которых соответствует сумме амплитуд. Как результат в спектре образуется пик соответствующей энергии, равной сумме энергий "совпавших" при регистрации фотонов (рис. 2.13).
Рис. 2.13. Спектральное распределение с пиком совпадения, наблюдаемое на сцинтилляционном спектрометре с кристаллом NaI(Tl)
Пики совпадения в наблюдаемом спектре появляются по разным причинам: а) фотоны могут быть испущены в каскадном распаде (111I); б) эмиссия фотона и характеристического кванта при электронном распаде (125I); в) измерения с источником высокой активности. Наиболее часто пики совпадения наблюдаются у спектрометров колодезного типа.
Yandex.RTB R-A-252273-3- Физика ядерной медицины
- Предисловие
- Введение
- Список литературы
- Оглавление
- Соотношение между единицами измерения физических величин
- Классификация излучений
- Строение атома и ядра
- 2.1. Основные определения атомной структуры
- Модель атома Резерфорда
- Модель атома водорода Бора
- Многоэлектронные атомы
- Строение ядра
- Ядерные реакции
- Радиоактивность
- Виды радиоактивного распада
- Генераторные системы
- Характеристики поля излучения
- 3.1. Флюенс и плотность потока
- Керма и поглощенная доза
- Взаимодействие излучений с веществом
- 4.1. Сечения взаимодействия
- Взаимодействие заряженных частиц с веществом
- 4.2.1. Общее описание взаимодействия
- 4.2.2. Взаимодействие с орбитальными электронами
- 4.2.3. Взаимодействие с ядрами атомов
- 4.2.4. Тормозная способность
- 4.2.5. Ограниченная массовая тормозная способность и поглощенная доза
- 4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность
- Взаимодействие фотонов с веществом
- Общее рассмотрение
- Фотоэлектрический эффект
- Комптоновское (некогерентное) рассеяние
- Когерентное (релеевское) рассеяние
- Образование электронно-позитронных пар
- Фотоядерные реакции
- Полные микроскопические и макроскопические сечения взаимодействия фотонов
- Производство радионуклидов
- 5.1. Общее рассмотрение
- Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
- Производство р/н в реакторах
- Производство р/н на циклотронах
- Контрольные вопросы
- Список литературы
- Глава 2. Методы регистрации и детекторы ионизирующего излучения, применяемые в ядерной медицине
- Газовые ионизационные детекторы
- Вводные замечания
- 1.2. Основы теории работы газонаполненного ионизационного детектора
- 1.2.1. Область рекомбинации
- 1.2.2.Область ионизационного насыщения
- 1.2.3. Область пропорциональности
- 1.2.4. Плато Гейгера-Мюллера
- 1.2.5. Область непрерывного разряда
- 1.3. Ионизационные радиационные детекторы в ядерной медицине
- Сцинтилляционные детекторы и системы регистрации
- Общие требования к детекторам
- Сцинтилляторы
- Характеристики неорганических сцинтилляторов, наиболее часто применяемых в ядерной медицине и пэт
- Фотоэлектронные умножители и электронные устройства в сцинтилляционном методе
- Спектрометрия с кристаллом NaI(Tl)
- Вводные замечания
- Аппаратурная форма линии спектрометра
- Общие характеристики сцинтилляционных детекторов с кристаллом NaI(Tl)
- Детектирование совпадений
- Счетчик с колодцем
- 3. Полупроводниковые детекторы
- 3.1. Общие замечания
- 3.2. Физика полупроводниковых детекторов
- 3.3. Захват носителей заряда
- 3.4. Теорема Рамо и индукция сигнала
- 3.5. Транспорт заряда и мобильность дрейфа
- 3.6. Коррекция захватов
- Статистика регистрации ионизирующих излучений
- 4.1. Погрешность, точность и воспроизводимость
- Распределение вероятности
- Распространение (передача) ошибок
- Передача погрешностей в арифметических операциях
- Тестирование гипотез
- Часто используемые формулы статистики отсчетов
- Доверительный интервал
- Значения вероятностей для критерия хи-квадрат в зависимости от числа степеней свободы [9]
- Статистики и анализ изображения
- Контрольные вопросы
- Список литературы
- Глава 3. Гамма-камера
- Краткая история
- Принцип работы гамма-камеры Ангера
- Основные физические характеристики медицинских гамма-камер
- Собственная эффективность
- Эффективность коллиматора
- Системная чувствительность
- Пространственное разрешение
- Собственное энергетическое разрешение
- Рассеяние в пациенте и коллиматоре
- Пространственная однородность, линейность и энергетическая чувствительность
- Собственная пространственная однородность
- Коррекция энергетической чувствительности
- Нелинейность и ее коррекция
- Автоматическая настройка фэу
- Эффекты высокой скорости счета
- Многокристальные и полупроводниковые гамма-камеры
- Тесты контроля качества работы гамма-камер
- Ежедневные тесты
- Еженедельные тесты
- Ежегодные тесты
- Контрольные вопросы
- Список литературы
- Глава 4. Коллиматоры гамма-камеры: характеристики и проектирование
- Параметры конструкции коллиматоров
- Общее рассмотрение
- Системные параметры
- Базовые конструкционные параметры коллиматора
- Подстроечные параметры геометрии коллиматора
- Визуализационные свойства коллимационных систем
- Геометрическое разрешение коллиматора
- Чувствительность коллиматора
- Компромисс между чувствительностью и разрешением
- Проблема видимости схемы расположения отверстий
- Прохождение через септу
- Оптимизация конструкции коллиматоров с параллельными каналами
- Некоторые нерешенные проблемы в конструктивном решении коллиматоров
- Контрольные вопросы
- Список литературы
- Глава 5. Получение изображений в гамма-камерах
- Представление в компьютере изображений, создаваемых гамма-камерами
- Дискретизация аналоговых данных
- Структура цифрового изображения
- Сбор цифровых данных
- Статическое исследование
- Динамическое исследование
- Ждущий режим обследования
- Формат dicom, архивация изображений и система коммуникации
- Физические факторы, влияющие на качество изображения
- Пространственное разрешение
- Комптоновское рассеяние фотонов
- Шум изображения и контраст
- Некоторые математические преобразования, используемые при обработке изображений
- Анализ в частотном пространстве
- 3.2. Теория выборки
- 3.3. Свертка функций
- 3.4. Дискретные преобразования Фурье
- 3.5. Графическое изображение дискретного преобразования Фурье
- 3.6 Модель процесса визуализации
- Фильтрация цифрового изображения
- 4.1. Линейная и нелинейная фильтрация
- 4.2. Стационарные и нестационарные фильтры
- 4.3. Низкочастотные фильтры и восстанавливающие фильтры
- Проектирование оптимального фильтра
- 5.1. Фильтр Метца
- 5.2. Фильтр Винера
- Контрольные вопросы
- Список литературы
- Глава 6. Применение планарных изображений для количественного определения активности in-vivo
- Процесс ослабления γ-излучения
- Метод геометрического среднего
- Накопление рассеянного излучения
- Контрольные вопросы
- Список литературы
- Глава 7. Однофотонная эмиссионная компьютерная томография (офэкт)
- Системы однофотонной эмиссионной томографии на базе гамма-камер
- 1.1. Получение томографических данных
- . Разрешение и чувствительность
- . Коллиматоры
- 1.3.1. Коллиматоры с параллельными каналами
- 1.3.2. Фокусирующие коллиматоры
- Типы орбит
- Корректировка ослабления
- Трансаксиальная томография
- Реконструкция изображений
- 3.1 Простое обратное проецирование
- 3.2. Обратное проецирование с фильтрацией
- 3.2.1. Метод свертки
- 3.2.2. Метод преобразований Фурье
- 3.3. Метод итеративной реконструкции
- Количественная офэкт
- 4.1. Количественное определение
- 4.2. Факторы, влияющие на количественную офэкт
- 4.2.1. Факторы пациента
- 4.2.2. Физические факторы
- 4.2.3. Технические факторы
- 4.3. Методы компенсации ослабления
- 4.3.1. Методы компенсации для однородного ослабления
- 4.3.2. Методы компенсации для неоднородного ослабления
- 4.4. Методы компенсации отклика детектора
- 4.5. Методы компенсации рассеяния
- Тесты контроля качества для офэкт
- 5.1. Ежедневные тесты
- 5.2. Еженедельные тесты
- Контрольные вопросы
- Список литературы
- Глава 8. Производство радионуклидов
- 1. Уравнения производства радионуклидов
- 2. Производство радионуклидов на ядерных реакторах
- Перечень наиболее важных для ям радионуклидов, производимых на ядерных реакторах [1]
- 3. Производство радионуклидов на ускорителях
- 3.1. Циклотрон
- Перечень наиболее важных для ям р/н, производимых на циклотронах [1]
- 3.2. Линейный ускоритель
- 4. Генераторы
- 4.1. Общая концепция
- Перечень полезных для ям р/н, производимых на линейных ускорителях [1]
- 4.2. Математические соотношения
- 4.2.1. Вековое равновесие
- 4.2.2. Временное равновесие
- 4.2.3. Неравновесие
- Перечень некоторых наиболее важных для ям генераторных систем [1]
- 4.3. Практическое применение
- 5. Мишени
- 5.1. Физическая и химическая форма
- 5.2. Тепловые свойства
- 5.3. Химическая стабильность, реактивность и чистота
- 5.4. Капсулирование
- Контрольные вопросы
- Список литературы
- Список основных сокращений
- Физика ядерной медицины
- 115409, Москва, Каширское шоссе, 31