Пространственное разрешение
Пространственное разрешение гамма-камеры определяется как способность прибора верно воспроизводить изображение объекта, четко вырисовывая в результате распределение активности в объекте. Количественно оно может быть определено как наименьшее расстояние между двумя параллельными линейными источниками, при котором на изображении они воспринимаются раздельно. Пространственное разрешение гамма-камеры включает две составляющие: собственную (внутреннюю) и внешнюю, обусловленную, главным образом, коллиматором. Собственное разрешение связано с точностью, с которой взаимодействие может быть локализовано внутри кристалла. Оно измеряется с помощью регистрации трансмиссионного изображения узкощелевого (ширина < 1 мм) фантома и определения распределения отсчетов в направлении, перпендикулярном к длинной оси щели. Кривая результирующего распределения называется функцией расширения (размытия) линии (англ. a line spread function (LSF)), количественно собственное разрешение определяется как полная ширина на половине высоты распределения (англ. full-width-at-half-maximum (FWHM)) (рис. 3.11).
Рис. 3.11. Геометрия измерения внутренней составляющей пространственного разрешения (а), кривая функции расширения (б) и связанная с ней модуляционная функция передачи (в)
Пространственное разрешение всей системы измеряется визуализацией линейного источника с активным диаметром меньшим (< 1 мм), чем ожидаемая величина FWHM. Для этого длинная пластиковая трубка, заполненная радиоактивным раствором, помещается в поле детектора камеры. Гамма-камера, соединенная с компьютером, набирает и запоминает число отсчетов от линейного источника в одном ракурсе, и компьютер генерирует LSF. Отсчеты, полученные на пошаговых расстояниях, вычерчиваются в зависимости от расстояния до центральной оси коллиматора для получения колокообразной кривой LSF (рис. 3.11 и 3.12).
Как видно из рисунка и следует из формул (3.5) – (3.15), форма LSF и разрешение (FWHM) заметно зависят от расстояния источник-коллиматор. В стандартном варианте это расстояние равно 10 см.
Рис. 3.12. Функции расширения линии (LSF) гамма-камеры, снабженной низкоэнергетическим универсальным коллиматором с параллельными каналами, полученные в воздухе (а) и в воде (б) на разных расстояниях от линейного источника 99mTc [5] (Cаша, с. 124)
Следует отметить, что величина FWHM может не представлять истинного пространственного разрешения, так как компоненты, связанные с рассеянием фотонов и прохождением через септум, попадают в хвостовую часть LSF (т.е. ниже 50 %), и поэтому не учитываются.
Более полную и количественную оценку пространственного разрешения прибора дает модуляционная передаточная функция (англ. the modulation transfer function (MTF)). Концепция MTF иллюстрируется на рис. 3.13.
Рис. 3.13. Иллюстрация концепции модуляционной передаточной функции
Пусть распределение активности источника имеет синусоидальный характер с максимальной Amax и минимальной активностями Amin (рис. 3.13). Подобное распределение дает пространственную частоту ν в циклах на сантиметр или в циклах на миллиметр. Контраст или модуляция Ms активности источника равна:
(3.16)
В случае идеального устройства визуализации в изображении будут получены такие же Amax и Amin. Однако в реальности амплитуда пика активности будет равна Cmax и минимум активности равен Сmin, меньшие чем Amax и Amin. Тогда модуляция изображения определяется как
(3.17)
Отсюда MTF для пространственной частоты ν рассчитывается по формуле:
(3.18)
Когда Ms = Mi, то MTF = 1 и такой результат получается, если синусоидальные циклы хорошо разделены, а измерительное устройство верно воспроизводит каждый цикл. При сближении пиков и впадин, что соответствует увеличении пространственной частоты распределения, измерительное устройство, в конце концов, перестает их различать. Тогда значение MTF приближается к нулю, что означает наихудшее пространственное разрешение системы. Значения MTF между 0 и 1 представляют промежуточное пространственное разрешение. Важно отметить, что небольшие объекты лучше отображаются при высоких частотах, а широкие объекты при низких частотах.
На практике при анализе пространственного разрешения в зависимости от частоты используется преобразование Фурье нормализованной LSF. Так как Фурье преобразование является комплексной переменной, результат имеет два параметра: амплитуду (модуль) и фазовый угол (угол между комплексным вектором и действительной осью). Первый представляет модуляционную передаточную функцию (см. рис. 3.11). Она, как отмечалось выше, является мерой эффективности передачи относительных амплитуд пространственных частот, содержащихся в распределение объекта.
Графики зависимости MTF от пространственной частоты бывают очень полезны для оценки общего пространственного разрешения системы. Примеры этих зависимостей показаны на рис. 3.14 для трех систем визуализации распределений активности в объекте.
Из рисунка видно, что при очень низких частотах (т.е. широком разделение синусоидальных циклов) MTF практически равны единице для всех трех систем, или, другими словами, все системы дают хорошее отображение источника. При увеличении частоты система A на рис. 3.14 обеспечивает лучшее разрешение, чем система B, а та, в свою очередь, лучшее, чем система С.
Рис. 3.14. Зависимость MTF от пространственной частоты для трех систем визуализации распределений активности в объекте (Саша. с 126)
Отдельные части системы визуализации могут иметь свои собственные MTF, тогда MTF всей системы получают перемножением индивидуальных MTF:
(3.19)
Фазовый угол тоже несет важную информацию, так как ненулевое значение фазового угла является признаком пространственного сдвига между объектом и изображением для данной частоты.
Первая камера Ангера имела 19 ФЭУ и внутреннее пространственное разрешение для 140-кэВ фотонов равнялось ~ 10 мм. У современных камер число ФЭУ доходит до 90, а разрешение достигает 3 – 4 мм.
Внутреннее пространственное разрешение улучшается с повышением энергии фотонов и, наоборот, ухудшается с понижением их энергии из-за увеличения статистических флуктуаций при образовании световых фотонов, связанное с уменьшением поглощаемой в кристалле энергии. Оно также улучшается с сужением входного окна амплитудного анализатора, так как при этом уменьшается вклад рассеянного излучения.
Многократное комптоновское рассеяния γ-излучения, сопровождаемое поглощением всех рассеянных фотонов в кристалле, создает неопределенность в X, Y-локализации первичного взаимодействия и ухудшает внутреннее разрешение. Эффект возрастает с увеличением толщины кристалла.
Как отмечалось выше, кроме внутренней составляющей имеется также внешняя (или геометрическая) составляющая пространственного разрешения, связанная с коллиматором. Эту составляющую для четырех типов коллиматоров можно оценить по формулам (3.5) – (3.15). Комбинация обеих составляющих дает величину пространственного разрешения системы Rs:
(3.20)
где Ri и Rg – внутреннее и геометрическое пространственное разрешение.
Разрешение системы на расстоянии 10 см в рассеивающем материале находится в интервале от 8 до 12 мм в зависимости от разрешения коллиматора. Из уравнений (3.5) – (3.15) следует, что между геометрической эффективностью и пространственным разрешением коллиматоров существует примерно квадратичная зависимость. Этот факт имеет важное практическое значение. Если, например, разрешение двух коллиматоров отличается в два раза, то скорость счета при одинаковых геометрии и источнике будет отличаться уже в четыре раза.
Yandex.RTB R-A-252273-3- Физика ядерной медицины
- Предисловие
- Введение
- Список литературы
- Оглавление
- Соотношение между единицами измерения физических величин
- Классификация излучений
- Строение атома и ядра
- 2.1. Основные определения атомной структуры
- Модель атома Резерфорда
- Модель атома водорода Бора
- Многоэлектронные атомы
- Строение ядра
- Ядерные реакции
- Радиоактивность
- Виды радиоактивного распада
- Генераторные системы
- Характеристики поля излучения
- 3.1. Флюенс и плотность потока
- Керма и поглощенная доза
- Взаимодействие излучений с веществом
- 4.1. Сечения взаимодействия
- Взаимодействие заряженных частиц с веществом
- 4.2.1. Общее описание взаимодействия
- 4.2.2. Взаимодействие с орбитальными электронами
- 4.2.3. Взаимодействие с ядрами атомов
- 4.2.4. Тормозная способность
- 4.2.5. Ограниченная массовая тормозная способность и поглощенная доза
- 4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность
- Взаимодействие фотонов с веществом
- Общее рассмотрение
- Фотоэлектрический эффект
- Комптоновское (некогерентное) рассеяние
- Когерентное (релеевское) рассеяние
- Образование электронно-позитронных пар
- Фотоядерные реакции
- Полные микроскопические и макроскопические сечения взаимодействия фотонов
- Производство радионуклидов
- 5.1. Общее рассмотрение
- Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
- Производство р/н в реакторах
- Производство р/н на циклотронах
- Контрольные вопросы
- Список литературы
- Глава 2. Методы регистрации и детекторы ионизирующего излучения, применяемые в ядерной медицине
- Газовые ионизационные детекторы
- Вводные замечания
- 1.2. Основы теории работы газонаполненного ионизационного детектора
- 1.2.1. Область рекомбинации
- 1.2.2.Область ионизационного насыщения
- 1.2.3. Область пропорциональности
- 1.2.4. Плато Гейгера-Мюллера
- 1.2.5. Область непрерывного разряда
- 1.3. Ионизационные радиационные детекторы в ядерной медицине
- Сцинтилляционные детекторы и системы регистрации
- Общие требования к детекторам
- Сцинтилляторы
- Характеристики неорганических сцинтилляторов, наиболее часто применяемых в ядерной медицине и пэт
- Фотоэлектронные умножители и электронные устройства в сцинтилляционном методе
- Спектрометрия с кристаллом NaI(Tl)
- Вводные замечания
- Аппаратурная форма линии спектрометра
- Общие характеристики сцинтилляционных детекторов с кристаллом NaI(Tl)
- Детектирование совпадений
- Счетчик с колодцем
- 3. Полупроводниковые детекторы
- 3.1. Общие замечания
- 3.2. Физика полупроводниковых детекторов
- 3.3. Захват носителей заряда
- 3.4. Теорема Рамо и индукция сигнала
- 3.5. Транспорт заряда и мобильность дрейфа
- 3.6. Коррекция захватов
- Статистика регистрации ионизирующих излучений
- 4.1. Погрешность, точность и воспроизводимость
- Распределение вероятности
- Распространение (передача) ошибок
- Передача погрешностей в арифметических операциях
- Тестирование гипотез
- Часто используемые формулы статистики отсчетов
- Доверительный интервал
- Значения вероятностей для критерия хи-квадрат в зависимости от числа степеней свободы [9]
- Статистики и анализ изображения
- Контрольные вопросы
- Список литературы
- Глава 3. Гамма-камера
- Краткая история
- Принцип работы гамма-камеры Ангера
- Основные физические характеристики медицинских гамма-камер
- Собственная эффективность
- Эффективность коллиматора
- Системная чувствительность
- Пространственное разрешение
- Собственное энергетическое разрешение
- Рассеяние в пациенте и коллиматоре
- Пространственная однородность, линейность и энергетическая чувствительность
- Собственная пространственная однородность
- Коррекция энергетической чувствительности
- Нелинейность и ее коррекция
- Автоматическая настройка фэу
- Эффекты высокой скорости счета
- Многокристальные и полупроводниковые гамма-камеры
- Тесты контроля качества работы гамма-камер
- Ежедневные тесты
- Еженедельные тесты
- Ежегодные тесты
- Контрольные вопросы
- Список литературы
- Глава 4. Коллиматоры гамма-камеры: характеристики и проектирование
- Параметры конструкции коллиматоров
- Общее рассмотрение
- Системные параметры
- Базовые конструкционные параметры коллиматора
- Подстроечные параметры геометрии коллиматора
- Визуализационные свойства коллимационных систем
- Геометрическое разрешение коллиматора
- Чувствительность коллиматора
- Компромисс между чувствительностью и разрешением
- Проблема видимости схемы расположения отверстий
- Прохождение через септу
- Оптимизация конструкции коллиматоров с параллельными каналами
- Некоторые нерешенные проблемы в конструктивном решении коллиматоров
- Контрольные вопросы
- Список литературы
- Глава 5. Получение изображений в гамма-камерах
- Представление в компьютере изображений, создаваемых гамма-камерами
- Дискретизация аналоговых данных
- Структура цифрового изображения
- Сбор цифровых данных
- Статическое исследование
- Динамическое исследование
- Ждущий режим обследования
- Формат dicom, архивация изображений и система коммуникации
- Физические факторы, влияющие на качество изображения
- Пространственное разрешение
- Комптоновское рассеяние фотонов
- Шум изображения и контраст
- Некоторые математические преобразования, используемые при обработке изображений
- Анализ в частотном пространстве
- 3.2. Теория выборки
- 3.3. Свертка функций
- 3.4. Дискретные преобразования Фурье
- 3.5. Графическое изображение дискретного преобразования Фурье
- 3.6 Модель процесса визуализации
- Фильтрация цифрового изображения
- 4.1. Линейная и нелинейная фильтрация
- 4.2. Стационарные и нестационарные фильтры
- 4.3. Низкочастотные фильтры и восстанавливающие фильтры
- Проектирование оптимального фильтра
- 5.1. Фильтр Метца
- 5.2. Фильтр Винера
- Контрольные вопросы
- Список литературы
- Глава 6. Применение планарных изображений для количественного определения активности in-vivo
- Процесс ослабления γ-излучения
- Метод геометрического среднего
- Накопление рассеянного излучения
- Контрольные вопросы
- Список литературы
- Глава 7. Однофотонная эмиссионная компьютерная томография (офэкт)
- Системы однофотонной эмиссионной томографии на базе гамма-камер
- 1.1. Получение томографических данных
- . Разрешение и чувствительность
- . Коллиматоры
- 1.3.1. Коллиматоры с параллельными каналами
- 1.3.2. Фокусирующие коллиматоры
- Типы орбит
- Корректировка ослабления
- Трансаксиальная томография
- Реконструкция изображений
- 3.1 Простое обратное проецирование
- 3.2. Обратное проецирование с фильтрацией
- 3.2.1. Метод свертки
- 3.2.2. Метод преобразований Фурье
- 3.3. Метод итеративной реконструкции
- Количественная офэкт
- 4.1. Количественное определение
- 4.2. Факторы, влияющие на количественную офэкт
- 4.2.1. Факторы пациента
- 4.2.2. Физические факторы
- 4.2.3. Технические факторы
- 4.3. Методы компенсации ослабления
- 4.3.1. Методы компенсации для однородного ослабления
- 4.3.2. Методы компенсации для неоднородного ослабления
- 4.4. Методы компенсации отклика детектора
- 4.5. Методы компенсации рассеяния
- Тесты контроля качества для офэкт
- 5.1. Ежедневные тесты
- 5.2. Еженедельные тесты
- Контрольные вопросы
- Список литературы
- Глава 8. Производство радионуклидов
- 1. Уравнения производства радионуклидов
- 2. Производство радионуклидов на ядерных реакторах
- Перечень наиболее важных для ям радионуклидов, производимых на ядерных реакторах [1]
- 3. Производство радионуклидов на ускорителях
- 3.1. Циклотрон
- Перечень наиболее важных для ям р/н, производимых на циклотронах [1]
- 3.2. Линейный ускоритель
- 4. Генераторы
- 4.1. Общая концепция
- Перечень полезных для ям р/н, производимых на линейных ускорителях [1]
- 4.2. Математические соотношения
- 4.2.1. Вековое равновесие
- 4.2.2. Временное равновесие
- 4.2.3. Неравновесие
- Перечень некоторых наиболее важных для ям генераторных систем [1]
- 4.3. Практическое применение
- 5. Мишени
- 5.1. Физическая и химическая форма
- 5.2. Тепловые свойства
- 5.3. Химическая стабильность, реактивность и чистота
- 5.4. Капсулирование
- Контрольные вопросы
- Список литературы
- Список основных сокращений
- Физика ядерной медицины
- 115409, Москва, Каширское шоссе, 31