logo
Part 1

Собственная эффективность

В тех случаях, когда γ-кванты испытывают многократное рассеяние в кристалле, генерируемые X и Y сигналы не точно отражают координаты первичного взаимодействия, так как свет создается в нескольких областях кристалла в пределах временного интервала, меньшего чем временное разрешение ФЭУ. Если существенная доля падающих фотонов испытывает многократное рассеяние, то это может привести к уменьшению пространственного разрешения до неприемлемого уровня. Наиболее эффективный прием борьбы с многократным рассеяниям заключается в уменьшении толщины кристалла, при этом возникает дополнительный положительный эффект, связанный с улучшением энергетического разрешения из-за уменьшения параллакса при распространении света. Но с другой стороны, уменьшение толщины кристалла приводит и к уменьшению собственной эффективности регистрации фотонов.

На рис. 3.7 проводится сравнение эффективностей регистрации фотонов разных энергий для двух толщин кристалла; 12,7 и 6,35 мм. Эта величина определяется как доля γ-квантов, падающих нормально на плоскую поверхность кристалла, которые полностью отдают свою энергию в кристалле либо вследствие фотоэлектрического поглощения, либо в результате многократного комптоновского рассеяния. Как видно из рис. 3.6 для основной γ-линии р/н 131I с энергией 364 кэВ собственная пиковая эффективность для толщины кристалла 12,7 мм равна 0,3, в то время как для 140 кэВ фотонов р/н 99mТс она равна 0,9. Этот пример наглядно демонстрирует, что сочетание гамма-камеры Ангера с генераторами 99mTc явилось важнейшим шагом в развитии инструментария радионуклидной диагностики.

Рис. 3.7. Сравнение зависимости от энергии фотонов собственной пиковой

эффективности кристалла NaI(TL) для двух толщин кристалла

Анализ распределения РФП, испускающих более высокоэнергетичное излучение, чем 99mTc, требует применения кристаллов большей толщины, иначе произойдет уменьшение эффективности регистрации. Увеличение толщины кристаллов в гамма-камере приводит к ряду нежелательных эффектов. Тем не менее, имеются важные приложения (например, регистрация аннигилляционных фотонов с энергией 0,511 МэВ), в которых толщина кристалла повышается до 15 – 25 мм. С возникающими при этом отрицательными эффектами борются с помощью цифрового процессинга.

    1. Yandex.RTB R-A-252273-3
      Yandex.RTB R-A-252273-4