Керма и поглощенная доза
Понятие "Керма" было введено для косвенно ионизирующего излучения, чтобы определять количество кинетической энергии передаваемой при взаимодействии этим излучением заряженным частицам в среде. Отсюда следует и определение, и название величины (сокращение от англ.- Kinetic Energy Released per unit MAss).
Керма К – отношение суммы первоначальных кинетических энергий заряженных частиц dEtr, образованных при взаимодействии косвенно ионизирующего излучения с веществом в элементарном объеме, к массе этого объема dm:
. (1.28)
Единицей измерения кермы в СИ является Дж/кг, она имеет специальное название – грей (Гр). Часто используемой внесистемной единицей является рад (1рад = 0,01 Гр). Рассмотрим подробнее понятие кермы применительно к γ-излучению.
Между кермой и флюенсом энергии для моноэнергетического γ-излучения существует простое соотношение:
(1.29)
где – массовый коэффициент передачи энергии для данной среды и данной энергии фотонов (см. далее).
Большая часть первоначальной энергии электронов, получаемых ими в результате взаимодействия фотонов в средах с низким атомным номером (воздух, вода, биологическая ткань), тратится на неупругие столкновения (ионизация и возбуждение) с атомными электронами. Некоторая часть этой энергии в результате радиационных взаимодействий с ядрами атомов трансформируется в тормозное излучение. Таким образом, керму можно разделить на две части:
К = Кион + Крад, (1.30)
где Кион , Крад – ионизационная и радиационная части кермы.
Эти части связаны с флюенсом энергии фотонов следующими соотношениями:
(1.31)
и
, (1.32)
где – массовый коэффициент истинного поглощения энергии фотонов, усредненный по спектру флюенса энергии (см. далее);
–средняя доля энергии электрона, теряемая на тормозное излучение и усредненная по спектру флюенса энергии фотонов. Для материалов с низким Z и энергией фотонов Е 1 МэВ величина g0 и соответственно К ≈ Кион.
Поглощенная доза представляет собой отношение средней энергии dE, поглощенной в элементарном объеме среды, к массе dm этого объема:
. (1.33)
Единицей измерения поглощенной дозы в СИ так же, как и кермы является грэй (Гр), который соответствует поглощению энергии 1 джоуль в 1 килограмме облученного вещества. В ядерной медицине и лучевой терапии в качестве среды выступают обычно биологическая ткань или близкая к ней по физическим свойствам вода. В дальнейшем, если не будет уточнений, под термином поглощенная доза (или просто доза) будет пониматься поглощенная доза в воде.
Заметим, что электроны, образующиеся при взаимодействии фотонов с веществом и, фактически, определяющие величину поглощенной дозы, имеют конечные пробеги. Поэтому энергия, передаваемая γ-излучением в среду, поглощается не локально, а в некоторой окрестности точки взаимодействия. Кроме того, часть энергии может уноситься тормозным излучением. Все это приводит к достаточно сложной связи между кермой и поглощенной дозой. В условиях существования электронного равновесия, когда энергия, вносимая заряженными частицами в элементарный объема равняется энергии, выносимой заряженными частицами из объема, справедливо следующее соотношение:
. (1.34)
В некоторых случаях на практике используется (хотя это не рекомендуется ГОСТами) также понятие экспозиционная доза или экспозиция. Экспозиционная доза определяется как отношение полного количества ионов одного знака dQ, образующихся в элементарном объеме воздуха после завершения всех процессов ионизации, к массе dm этого объема:
. (1.35)
Единицей измерения экспозиционной дозы в СИ является кулон на килограмм, Кл/кг. Внесистемной, часто используемой единицей является рентген (1 Р = 2.58·10-4 Кл/кг).
Экспозиционная доза представляет ионизационный эквивалент ионизационной части кермы в воздухе. Их связь выражается следующей формулой:
, (1.36)
где – средняя энергия, требующаяся для образования пары ионов в воздухе.
Yandex.RTB R-A-252273-3
- Физика ядерной медицины
- Предисловие
- Введение
- Список литературы
- Оглавление
- Соотношение между единицами измерения физических величин
- Классификация излучений
- Строение атома и ядра
- 2.1. Основные определения атомной структуры
- Модель атома Резерфорда
- Модель атома водорода Бора
- Многоэлектронные атомы
- Строение ядра
- Ядерные реакции
- Радиоактивность
- Виды радиоактивного распада
- Генераторные системы
- Характеристики поля излучения
- 3.1. Флюенс и плотность потока
- Керма и поглощенная доза
- Взаимодействие излучений с веществом
- 4.1. Сечения взаимодействия
- Взаимодействие заряженных частиц с веществом
- 4.2.1. Общее описание взаимодействия
- 4.2.2. Взаимодействие с орбитальными электронами
- 4.2.3. Взаимодействие с ядрами атомов
- 4.2.4. Тормозная способность
- 4.2.5. Ограниченная массовая тормозная способность и поглощенная доза
- 4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность
- Взаимодействие фотонов с веществом
- Общее рассмотрение
- Фотоэлектрический эффект
- Комптоновское (некогерентное) рассеяние
- Когерентное (релеевское) рассеяние
- Образование электронно-позитронных пар
- Фотоядерные реакции
- Полные микроскопические и макроскопические сечения взаимодействия фотонов
- Производство радионуклидов
- 5.1. Общее рассмотрение
- Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
- Производство р/н в реакторах
- Производство р/н на циклотронах
- Контрольные вопросы
- Список литературы
- Глава 2. Методы регистрации и детекторы ионизирующего излучения, применяемые в ядерной медицине
- Газовые ионизационные детекторы
- Вводные замечания
- 1.2. Основы теории работы газонаполненного ионизационного детектора
- 1.2.1. Область рекомбинации
- 1.2.2.Область ионизационного насыщения
- 1.2.3. Область пропорциональности
- 1.2.4. Плато Гейгера-Мюллера
- 1.2.5. Область непрерывного разряда
- 1.3. Ионизационные радиационные детекторы в ядерной медицине
- Сцинтилляционные детекторы и системы регистрации
- Общие требования к детекторам
- Сцинтилляторы
- Характеристики неорганических сцинтилляторов, наиболее часто применяемых в ядерной медицине и пэт
- Фотоэлектронные умножители и электронные устройства в сцинтилляционном методе
- Спектрометрия с кристаллом NaI(Tl)
- Вводные замечания
- Аппаратурная форма линии спектрометра
- Общие характеристики сцинтилляционных детекторов с кристаллом NaI(Tl)
- Детектирование совпадений
- Счетчик с колодцем
- 3. Полупроводниковые детекторы
- 3.1. Общие замечания
- 3.2. Физика полупроводниковых детекторов
- 3.3. Захват носителей заряда
- 3.4. Теорема Рамо и индукция сигнала
- 3.5. Транспорт заряда и мобильность дрейфа
- 3.6. Коррекция захватов
- Статистика регистрации ионизирующих излучений
- 4.1. Погрешность, точность и воспроизводимость
- Распределение вероятности
- Распространение (передача) ошибок
- Передача погрешностей в арифметических операциях
- Тестирование гипотез
- Часто используемые формулы статистики отсчетов
- Доверительный интервал
- Значения вероятностей для критерия хи-квадрат в зависимости от числа степеней свободы [9]
- Статистики и анализ изображения
- Контрольные вопросы
- Список литературы
- Глава 3. Гамма-камера
- Краткая история
- Принцип работы гамма-камеры Ангера
- Основные физические характеристики медицинских гамма-камер
- Собственная эффективность
- Эффективность коллиматора
- Системная чувствительность
- Пространственное разрешение
- Собственное энергетическое разрешение
- Рассеяние в пациенте и коллиматоре
- Пространственная однородность, линейность и энергетическая чувствительность
- Собственная пространственная однородность
- Коррекция энергетической чувствительности
- Нелинейность и ее коррекция
- Автоматическая настройка фэу
- Эффекты высокой скорости счета
- Многокристальные и полупроводниковые гамма-камеры
- Тесты контроля качества работы гамма-камер
- Ежедневные тесты
- Еженедельные тесты
- Ежегодные тесты
- Контрольные вопросы
- Список литературы
- Глава 4. Коллиматоры гамма-камеры: характеристики и проектирование
- Параметры конструкции коллиматоров
- Общее рассмотрение
- Системные параметры
- Базовые конструкционные параметры коллиматора
- Подстроечные параметры геометрии коллиматора
- Визуализационные свойства коллимационных систем
- Геометрическое разрешение коллиматора
- Чувствительность коллиматора
- Компромисс между чувствительностью и разрешением
- Проблема видимости схемы расположения отверстий
- Прохождение через септу
- Оптимизация конструкции коллиматоров с параллельными каналами
- Некоторые нерешенные проблемы в конструктивном решении коллиматоров
- Контрольные вопросы
- Список литературы
- Глава 5. Получение изображений в гамма-камерах
- Представление в компьютере изображений, создаваемых гамма-камерами
- Дискретизация аналоговых данных
- Структура цифрового изображения
- Сбор цифровых данных
- Статическое исследование
- Динамическое исследование
- Ждущий режим обследования
- Формат dicom, архивация изображений и система коммуникации
- Физические факторы, влияющие на качество изображения
- Пространственное разрешение
- Комптоновское рассеяние фотонов
- Шум изображения и контраст
- Некоторые математические преобразования, используемые при обработке изображений
- Анализ в частотном пространстве
- 3.2. Теория выборки
- 3.3. Свертка функций
- 3.4. Дискретные преобразования Фурье
- 3.5. Графическое изображение дискретного преобразования Фурье
- 3.6 Модель процесса визуализации
- Фильтрация цифрового изображения
- 4.1. Линейная и нелинейная фильтрация
- 4.2. Стационарные и нестационарные фильтры
- 4.3. Низкочастотные фильтры и восстанавливающие фильтры
- Проектирование оптимального фильтра
- 5.1. Фильтр Метца
- 5.2. Фильтр Винера
- Контрольные вопросы
- Список литературы
- Глава 6. Применение планарных изображений для количественного определения активности in-vivo
- Процесс ослабления γ-излучения
- Метод геометрического среднего
- Накопление рассеянного излучения
- Контрольные вопросы
- Список литературы
- Глава 7. Однофотонная эмиссионная компьютерная томография (офэкт)
- Системы однофотонной эмиссионной томографии на базе гамма-камер
- 1.1. Получение томографических данных
- . Разрешение и чувствительность
- . Коллиматоры
- 1.3.1. Коллиматоры с параллельными каналами
- 1.3.2. Фокусирующие коллиматоры
- Типы орбит
- Корректировка ослабления
- Трансаксиальная томография
- Реконструкция изображений
- 3.1 Простое обратное проецирование
- 3.2. Обратное проецирование с фильтрацией
- 3.2.1. Метод свертки
- 3.2.2. Метод преобразований Фурье
- 3.3. Метод итеративной реконструкции
- Количественная офэкт
- 4.1. Количественное определение
- 4.2. Факторы, влияющие на количественную офэкт
- 4.2.1. Факторы пациента
- 4.2.2. Физические факторы
- 4.2.3. Технические факторы
- 4.3. Методы компенсации ослабления
- 4.3.1. Методы компенсации для однородного ослабления
- 4.3.2. Методы компенсации для неоднородного ослабления
- 4.4. Методы компенсации отклика детектора
- 4.5. Методы компенсации рассеяния
- Тесты контроля качества для офэкт
- 5.1. Ежедневные тесты
- 5.2. Еженедельные тесты
- Контрольные вопросы
- Список литературы
- Глава 8. Производство радионуклидов
- 1. Уравнения производства радионуклидов
- 2. Производство радионуклидов на ядерных реакторах
- Перечень наиболее важных для ям радионуклидов, производимых на ядерных реакторах [1]
- 3. Производство радионуклидов на ускорителях
- 3.1. Циклотрон
- Перечень наиболее важных для ям р/н, производимых на циклотронах [1]
- 3.2. Линейный ускоритель
- 4. Генераторы
- 4.1. Общая концепция
- Перечень полезных для ям р/н, производимых на линейных ускорителях [1]
- 4.2. Математические соотношения
- 4.2.1. Вековое равновесие
- 4.2.2. Временное равновесие
- 4.2.3. Неравновесие
- Перечень некоторых наиболее важных для ям генераторных систем [1]
- 4.3. Практическое применение
- 5. Мишени
- 5.1. Физическая и химическая форма
- 5.2. Тепловые свойства
- 5.3. Химическая стабильность, реактивность и чистота
- 5.4. Капсулирование
- Контрольные вопросы
- Список литературы
- Список основных сокращений
- Физика ядерной медицины
- 115409, Москва, Каширское шоссе, 31