§ 62. Изотермы Ван-дер-Ваальса и их анализ
Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса— кривые зависимостиротVmпри заданныхТ,определяемые уравнением Ван-дер-Ваальса (61.2) длямолягаза. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T>Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуреTкна изотерме имеется лишь одна точка перегибаК.
Эта изотерманазываетсякритической, соответствующая ей температураTк— критической температурой; точка перегибаКназывается критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точкеобъемVк,идавлениеркназываются такжекритическими. Состояние с критическими параметрами (pк, Vк, Tк) называетсякритическим состоянием. При низких температурах (Т<Tк) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.
Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду
(62.1)
Уравнение (62.1) при заданных риТявляется уравнением третьей степени относительноVm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газаV1, V2иV3отвечают (символ «m» для простоты опускаем) одному значению давленияр1),второму случаю — изотермы при высоких температурах.
Рассматривая различные участки изотермы при T<Тк(рис. 90), видим, что на участках1—3и5—7при уменьшении объемаVmдавлениервозрастает, что естественно. На участке3—5сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка3—5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии7—6—2—1.Часть6–7отвечает газообразному состоянию, а часть2–1— жидкому. В состояниях, соответствующих горизонтальному участку изотермы6—2,наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называетсянасыщенным.
Данные выводы, следующие из анализа уравнения Ван-дер-Ваальса, были подтверждены опытами ирландского ученого Т. Эндрюса (1813—1885), изучавшего изотермическое сжатие углекислого газа. Отличие экспериментальных (Эндрюс) и теоретических (Ван-дер-Ваальс) изотерм заключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором — волнообразные.
Для нахождения критических параметров подставим их значения в уравнение (62.1) в запишем
(62.2)
(символ «m» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равныVкуравнение приводится к виду
(62.3)
или
Taxкак уравнения (62.2) и (62.3) тождественны, то в них должны быть равны и коэффициенты при неизвестных соответствующих степеней. Поэтому можно записать
(62.4)
Решая полученные уравнения, найдем
Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму р,Vmпод изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа — область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.
Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 2—6,соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5—6и2—3.Эти неустойчивые состояния называются метастабильными.Участок2—3 изображает перегретую жидкость, 5—6 — пересыщенный пар.Обе фазы ограниченно устойчивы.
При достаточно низких температурах изотерма пересекает ось Vm, переходя в область отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицательным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок8—9на нижней изотерме соответствуетперегретой жидкости, участок9—10 —растянутой жидкости.
- Предисловие
- Введение Предмет физики и ее связь с другими науками
- Единицы физических величин
- 1 Физические основы механики Глава 1 Элементы кинематики § 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- § 2. Скорость
- § 3. Ускорение и его составляющие
- § 4. Угловая скорость и угловое ускорение
- Глава 2 Динамика материальной точки и поступательного движения твердого тела § 5. Первый закон Ньютона. Масса. Сила
- § 6. Второй закон Ньютона
- § 7. Третий закон Ньютона
- § 8. Силы трения
- § 9. Закон сохранения импульса. Центр масс
- § 10. Уравнение движения тела переменной массы
- Глава 3 Работа и энергия §11. Энергия, работа, мощность
- § 12. Кинетическая и потенциальная энергии
- § 13. Закон сохранения энергии
- § 14. Графическом представление энергии
- § 15. Удар абсолютно упругих и неупругих тел
- Глава 4 Механика твердого тела § 16. Момент инерции
- § 17. Кинетическая энергия вращения
- § 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- § 19. Момент импульса и закон то сохранения
- § 20. Свободные оси. Гироскоп
- § 21. Деформации твердого тела
- Глава 5 Тяготение. Элементы теории поля § 22. Законы Кеплера. Закон всемирного тяготения
- § 23. Сила тяжести и вес. Невесомость
- § 24. Поле тяготения и то напряженность
- § 25. Работа в поле тяготения. Потенциал поля тяготения
- § 26. Космические скорости
- § 27. Неинерциальные системы отсчета. Силы инерции
- Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе
- § 29. Уравнение неразрывности
- § 30. Уравнение Бернулли и следствия из него
- § 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- § 32. Методы определения вязкости
- § 33. Движение тел в жидкостях и газах
- Глава 7 Элементы специальной (частной) теории относительности § 34. Преобразования Галилея. Механический принцип относительности
- § 35. Постулаты специальной (частной) теории относительности
- § 36. Преобразования Лоренца
- § 37. Следствия из преобразований Лоренца
- § 38. Интервал между событиями
- § 39. Основной закон релятивистской динамики материальной точки
- § 40. Закон взаимосвязи массы и энергии
- 2 Основы молекулярной физики и термодинамики Глава 8 Молекулярно-кинетическая теория идеальных газов § 41. Статистический и термодинамический методы. Опытные законы идеального газа
- § 42. Уравнение Клапейрона — Менделеева
- § 43. Основное уравнение молекулярно-кинетической теории идеальных газов
- § 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- § 45. Барометрическая формула. Распределение Больцмана
- § 46. Среднее число столкновений и средняя длина свободного пробега молекул
- § 47. Опытное обоснование молекулярно-кинетической теории
- § 48. Явления переноса в термодинамически неравновесных системах
- § 48. Вакуум и методы его получения. Свойства ультраразреженных газов
- Глава 9 Основы термодинамики § 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- § 51. Первое начало термодинамики
- § 52. Работа газа при изменении его объема
- § 53. Теплоемкость
- § 54. Применение первого начала термодинамики к изопроцессам
- § 55. Адиабатический процесс. Политропный процесс
- § 56. Круговой процесс (цикл). Обратимые и необратимые процессы
- § 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- § 58. Второе начало термодинамики
- § 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- Глава 10 Реальные газы, жидкости и твердые тела § 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- § 61. Уравнение Ван-дер-Ваальса
- § 62. Изотермы Ван-дер-Ваальса и их анализ
- § 63. Внутренняя энергия реального газа
- § 64. Эффект Джоуля — Томсона
- § 65. Сжижение газов
- § 66. Свойства жидкостей. Поверхностное натяжение
- § 67. Смачивание
- § 68. Давление под искривленной поверхностью жидкости
- § 69. Капиллярные явления
- § 70. Твердые тела. Моно- и поликристаллы
- § 71. Типы кристаллических твердых тел
- § 72. Дефекты в кристаллах
- § 73. Теплоемкость твердых тел
- § 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- § 75. Фазовые переходы I и п рода
- § 76. Диаграмма состояния. Тройная точка
- 3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- § 78. Закон Кулона
- § 79. Электростатическое поле. Напряженность электростатического поля
- § 80. Принцип суперпозиции электростатических полей. Поле диполя
- § 81. Теорема Гаусса для электростатического поля в вакууме
- § 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- § 83. Циркуляция вектора напряженности электростатического поля
- § 84. Потенциал электростатического поля
- § 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- § 86. Вычисление разности потенциалов по напряженности поля
- § 87. Типы диэлектриков. Поляризация диэлектриков
- § 88. Поляризованность. Напряженность поля в диэлектрике
- § 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- § 90. Условия на границе раздела двух диэлектрических сред
- § 91. Сегнетоэлектрики
- § 92. Проводники в электростатическом поле
- § 93. Электрическая емкость уединенного проводника
- § 94. Конденсаторы
- § 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- § 97. Сторонние силы. Электродвижущая сила и напряжение
- § 98. Закон Ома. Сопротивление проводников
- § 99. Работа и мощность тока. Закон Джоуля — Ленца
- § 100. Закон Ома для неоднородного участка цепи
- § 101. Правила Кирхгофа для разветвленных цепей
- Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- § 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- § 104. Работа выхода электронов из металла
- § 105. Эмиссионные явления и их применение
- § 106. Ионизация газов. Несамостоятельный газовый разряд
- § 107. Самостоятельный газовый разряд и его типы
- § 108. Плазма и ее свойства
- Глава 14 Магнитное поле § 109.Магнитное поле и его характеристики
- § 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- § 111. Закон Ампера. Взаимодействие параллельных токов
- § 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- § 113. Магнитное поле движущегося заряда
- § 114. Действие магнитного поля на движущийся заряд
- § 115. Движение заряженных частиц в магнитном поле
- § 116. Ускорители заряженных частиц
- § 117. Эффект Холла
- § 118. Циркуляция вектора в магнитного поляввакууме
- § 119. Магнитные поля соленоида и тороида
- § 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- § 121. Работа по перемещению проводника и контура с током в магнитном поле
- Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- § 123. Закон Фарадея и его вывод из закона сохранения энергии
- § 124. Вращение рамки в магнитном поле
- § 125. Вихревые токи (токи Фуко)
- § 126. Индуктивность контура. Самоиндукция
- § 127. Токи при размыкании и замыкании цепи
- § 128. Взаимная индукция
- § 129. Трансформаторы
- § 130. Энергия магнитного поля
- Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- § 133. Намагниченность. Магнитное поле в веществе
- § 134. Условия на границе раздела двух магнетиков
- § 135. Ферромагнетики и их свойства
- § 136. Природа ферромагнетизма
- Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- § 138. Ток смещения
- § 139. Уравнения Максвелла для электромагнитного поля
- 4 Колебания и волны Глава 18 Механические и электромагнитные колебания § 140. Гармонические колебания и их характеристики
- § 141. Механические гармонические колебания
- § 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- § 143. Свободные гармонические колебания в колебательном контуре
- § 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- § 145. Сложение взаимно перпендикулярных колебаний
- § 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- § 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- § 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- § 148. Переменный ток
- § 150. Резонанс напряжений
- § 151. Резонанс токов
- § 152. Мощность, выделяемая в цепи переменного тока
- Глава 19 Упругие волны § 153. Волновые процессы. Продольные и поперечные волны
- § 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- § 155. Принцип суперпозиции. Групповая скорость
- § 156. Интерференция волн
- § 157. Стоячиеволны
- § 158. Звуковые волны
- S159. Эффект Доплере в акустике
- § 160. Ультразвук и его применение
- Глава 20 Электромагнитные волны § 161. Экспериментальноеполучение электромагнитных волн
- § 162. Дифференциальное уравнение электромагнитной волны
- § 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- § 164. Излучение диполя. Применение электромагнитных волн
- 5 Оптика. Квантовая природа излучения Глава 21 Элементы геометрической и электронной оптики § 165. Основные законы оптики. Полное отражение
- § 166. Тонкие линзы. Изображение предметов с помощью линз
- § 187. Аберрации (погрешности) оптических систем
- § 168. Основные фотометрические величины и их единицы
- § 189. Элементы электронной оптики
- Глава 22 Интерференция света § 170. Развитие представлений о природе света
- § 171. Когерентность и монохроматичность световых волн
- § 172. Интерференция света
- § 173. Методы наблюдения интерференции света
- § 174. Интерференция света в тонких пленках
- § 175. Применение интерференции света
- Глава 23 Дифракция света § 176. Принцип Гюйгенса — Френеля
- § 177. Метод зон Френеля. Прямолинейное распространение света
- § 178. Дифракция Френеля на круглом отверстии и диске
- § 178. Дифракция Фраунгофера на одной щели
- § 180. Дифракция Фраунгофера на дифракционной решетке
- § 181. Пространственная решетка. Рассеяние света
- § 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- § 183. Разрешающая способность оптических приборов
- § 184. Понятие о голографии
- Глава 24 Взаимодействие электромагнитных волн с веществом § 185. Дисперсия света
- § 186. Электронная теория дисперсии светя
- § 187. Поглощение (абсорбция) света
- § 188. Эффект Доплера
- § 189. Излучение Вавилова — Черенкова
- Глава 25 Поляризация света § 190. Естественный и поляризованный свет
- § 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- § 192. Двойное лучепреломление
- § 193. Поляризационные призмы и поляроиды
- § 194. Анализ поляризованного света
- § 195. Искусственная оптическая анизотропия
- § 196. Вращение плоскости поляризации
- Глава 26 Квантовая природа излучения § 197. Тепловое излучение и его характеристики
- § 188. Закон Кирхгофа
- § 199. Законы Стефана — Больцмана и смещения Вина
- § 200. Формулы Рэлея — Джинса и Планка
- § 201. Оптическая пирометрия. Тепловые источники света
- § 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- § 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- § 204. Применение фотоэффекта
- § 205. Масса и импульс фотона. Давление света
- § 206. Эффект Комптона и его элементарная теория
- § 207. Единство корпускулярных и волновых свойств электромагнитного излучения
- 6 Элементы квантовой физики атомов, молекул и твердых тел Глава 27 Теория атома водорода по Бору § 208. Модели атома Томсона и Резерфорда
- § 209. Линейчатый спектр атома водорода
- § 210. Постулаты Бора
- § 211. Опыты Франка и Герца
- § 212. Спектр атома водорода по Бору
- Глава 28 Элементы квантовой механики § 213. Корпускулярно-волновой дуализм свойств вещества
- § 214. Некоторые свойства волн да Бройля
- § 215. Соотношение неопределенностей
- § 216. Волновая функция и ее статистический смысл
- § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- § 218. Принцип причинности в квинтовой механике
- § 219. Движение свободной частицы
- § 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- § 222. Линейный гармонический осциллятор в квантовой механике
- Глава 29 Элементы современной физики атомов и молекул § 223. Атом водорода в квантовой механике
- § 225. Спин электрона. Спиновое квантовое число
- § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- § 227. Принцип Паули. Распределение электронов в атоме по состояниям
- § 228. Периодическая система элементов Менделеева
- § 229. Рентгеновские спектры
- § 230. Молекулы: химические связи, понятие об энергетических уровнях
- § 231. Молекулярные спектры. Комбинационное рассеяние света
- § 232. Поглощение. Спонтанное и вынужденное излучения
- § 233. Оптические квантовые генераторы (лазеры)
- Глава 30 Элементы квантовой статистики § 234. Квантовая статистика. Фазовое пространство. Функция распределения
- § 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- § 236. Вырожденный электронный газ в металлах
- § 237. Понятие о квантовой теории теплоемкости. Фононы
- § 238. Выводы квантовой теории электропроводности металлов
- § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- Глава 31 Элементы физики твердого тела § 240. Понятие о зонной теории твердых тел
- § 241. Металлы, диэлектрики и полупроводники по зонной теории
- § 242. Собственная проводимость полупроводников
- § 243. Примесная проводимость полупроводников
- § 244. Фотопроводимость полупроводников
- § 245. Люминесценция твердых тел
- § 246. Контакт двух металлов по зонной теории
- § 247. Термоэлектрические явления и их применение
- § 248. Выпрямление на контакте металл — полупроводник
- § 249. Контакт электронного и дырочного полупроводников (p-n-переход)
- § 250. Полупроводниковые диоды и триоды (транзисторы)
- 7 Элементы физики атомного ядра и элементарных частиц Глава 32 Элементы физики атомного ядра § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- § 252. Дефект массы и энергия связи ядра
- § 253. Спин ядра и его магнитный момент
- § 254. Ядерные силы. Модели ядра
- § 255. Радиоактивное излучение и его виды
- § 256. Закон радиоактивного распада. Правила смещения
- § 257. Закономерности-распада
- § 259. Гамма-излучение и его свойства
- § 260. Резонансное поглощение-излучения (эффект Мёссбауэра*)
- § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- § 262. Ядерные реакции и их основные типы
- § 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- § 265. Реакция деления ядра
- § 266. Цепная реакция деления
- § 267. Понятие о ядерной энергетике
- § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- Глава 33 Элементы физики элементарных частиц § 269. Космическое излучение
- § 270. Мюоны и их свойства
- § 271. Мезоны и их свойства
- § 272. Типы взаимодействий элементарных частиц
- § 273. Частицы и античастицы
- § 274. Гипероны. Странность и четность элементарных частиц
- § 275. Классификация элементарных частиц. Кварки
- Заключение
- Оглавление