Глава 22 Интерференция света § 170. Развитие представлений о природе света
Основные законы оптики известны еще с древних веков. Так, Платон (430 г. до н. э.) установил закон прямолинейного распространения и закон отражения света. Аристотель (350 г. до н. э.) и Птоломей изучали преломление света. Первые представления о природе света возникли у древних греков и египтян, которые в дальнейшем, по мере изобретения и усовершенствования различных оптических инструментов, например параболических зеркал (XIII в.), фотоаппарата и микроскопа (XVI в.), зрительной трубы (XVII в.), развивались и трансформировались. В конце XVII в. на основе многовекового опыта и развития представлений о свете возникли две теориисвета:корпускулярная(И. Ньютон) иволновая(Р. Гук и X. Гюйгенс).
Согласно корпускулярной теории (теории истечения), свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолинейным траекториям. Движение световых корпускул Ньютон подчинил сформулированным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдается закон равенства углов падения в отражения. Преломление света Ньютон объяснял притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало постоянство синуса угла падения i1к синусу угла преломления i2:
(170.1)
где с— скорость распространения света в вакууме, v —скорость распространения света в среде. Так какnв среде всегда больше единицы, то,по теории Ньютона, v>c,т. е. скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.
Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде — эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами — упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.
Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих воли дает положение волнового фронта в следующий момент времени. Напомним, что волновым фронтом называется геометрическое место точек, до которых доходят колебания к моменту времени t.Принцип Гюйгенса позволяет анализировать распространение света и вывести законы отражения и преломления.
Выведем законы отражения и преломления света, исходя из принципа Гюйгенса. Пусть на границу раздела двух сред падает плоская волна (фронт волны — плоскость AВ),распространяющаяся вдоль направленияI(рис. 243). Когда фронт волны достигнет отражающей поверхности в точкеA,эта точка начнет излучать вторичную волну. Для прохождения волной расстоянияВС требуется время t=BC/v.За это же время фронт вторичной волны достигнет точек полусферы, радиус ADкоторой равен vt=BC.Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC,а направление распространения этой волны — лучомII.Из равенства треугольниковAВСиADСвытекает закон отражения: угол отражения i’1, равен углу падения i1.
Для вывода закона преломления предположим, что плоская волна (фронт волны — плоскость AВ),распространяющаяся в вакууме вдоль направленияI со скоростью светас, падает на границу раздела со средой, в которой скорость ее распространения равнаv (рис. 244). Пусть время прохождения волной путиВСравноt.Тогда BC=ct.За это же время фронт волны, возбуждаемый точкойAв среде со скоростьюv, достигнет точек полусферы, радиус которой AD=vt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC,а направление ее распространения — лучомIII. Из рис. 244 следует, что AC=BC/sini1=AD/sini2,т. е. ct/sini1=vt/sini2c, откуда
(170.2)
Сравнивая выражения (170.2) и (170.1), видим, что волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса, v<c,т. е. скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме.
Таким образом, к началу XVIII в. существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе эти теории объясняли прямолинейное распространение света, законы отражения и преломления. XVIII век стал веком борьбы этих теорий. Экспериментальное доказательство справедливости волновой теории было получено в 1851 г., когда Э. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение, соответствующее формуле (170.2). К началу XIX столетия корпускулярная теория была полностью отвергнута и восторжествовала волновая теория. Большая заслуга в этом отношении принадлежит английскому физику Т. Юнгу, исследовавшему явления дифракции и интерференции, и французскому физику О. Френелю (1788—1827), дополнившему принцип Гюйгенса и объяснившему эти явления.
Несмотря на признание волновой теории, она обладала целым рядом недостатков. Например, явления интерференции, дифракции и поляризации могли быть объяснены только в том случае, если световые волны считать поперечными. С другой стороны, если световые волны — поперечные, то их носитель — эфир — должен обладать свойствами твердых тел. Попытка же наделить эфир свойствами твердого тела успеха не имела, так как эфир не оказывает заметного воздействия на движущиеся в нем тела. Далее эксперименты показали, что скорость распространения света в разных средах различна, поэтому эфир должен обладать в разных средах различными свойствами. Теория Гюйгенса не могла объяснить также физической природы наличия разных цветов.
Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений, что позволило Максвеллу в 70-х годах прошлого столетия создать электромагнитную теорию света (см. § 139). Согласно электромагнитной теории Максвелла (см. (162.3)),
где с и v —соответственно скорости распространения света в вакууме и в среде с диэлектрической проницаемостьюи магнитной проницаемостью.Это соотношение связывает оптические, электрические и магнитные постоянные вещества. По Максвеллу, и —величины, не зависящие от длины волны света, поэтому электромагнитная теория не могла объяснить явление дисперсии (зависимость показателя преломления от длины волны). Эта трудность была преодолена в конце XIXв. Лоренцем, предложившимэлектронную теорию, согласно которой диэлектрическая проницаемостьзависит от длины волны падающего света. Теория Лоренца ввела представление об электронах, колеблющихся внутри атома, и позволила объяснить явления испускания и поглощения света веществом.
Несмотря на огромные успехи электромагнитной теории Максвелла и электронной теории Лоренца, они были несколько противоречивы и при их применении встречался ряд затруднений. Обе теории основывались на гипотезе об эфире, только «упругий эфир» был заменен «эфиром электромагнитным» (теория Максвелла) или «неподвижным эфиром» (теория Лоренца). Теория Максвелла не смогла объяснить процессов испускания и поглощения света, фотоэлектрического эффекта, комптоновского рассеяния и т. д. Теория Лоренца, в свою очередь, не смогла объяснить многие явления, связанные с взаимодействием света с веществом, в частности вопрос о распределении энергии по длинам волн при тепловом излучении черного тела.
Перечисленные затруднения и противоречия были преодолены благодаря смелой гипотезе (1900) немецкого физика М. Планка (1858—1947), согласно которой излучение и поглощение света происходит не непрерывно, а дискретно, т. е. определенными порциями (квантами), энергия которых определяется частотой :
(170.3)
где h —постоянная Планка.
Теория Планка не нуждалась в понятии об эфире. Она объяснила тепловое излучение черного тела. Эйнштейн в 1905 г. создал квантовую теорию света, согласно которой не толькоизлучениесвета, но и егораспространениепроисходит в видепотока световых квантов — фотонов, энергия которых определяется соотношением (170.3), а масса
(170.4)
Квантовые представления о свете хорошо согласуются с законами излучения и поглощения света, законами взаимодействия света с веществом. Однако как с помощью этих представлений объяснить такие хорошо изученные явления, как интерференция, дифракция и поляризация света? Эти явления легко объясняются на основе волновых представлений. Все многообразие изученных свойств и законов распространения света, его взаимодействия с веществом показывает, что свет имеет сложную природу. Он представляет собой единство противоположных видов движения —корпускулярного (квантового)иволнового (электромагнитного). Длительный путь развития привел к современным представлениям одвойственной корпускулярно-волновой природе света. Выражения (170.3) и (170.4) связывают корпускулярные характеристики излучения — массу и энергию кванта — с волновыми — частотой колебаний и длиной волны. Таким образом, свет представляет собойединство дискретности и непрерывности.
- Предисловие
- Введение Предмет физики и ее связь с другими науками
- Единицы физических величин
- 1 Физические основы механики Глава 1 Элементы кинематики § 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- § 2. Скорость
- § 3. Ускорение и его составляющие
- § 4. Угловая скорость и угловое ускорение
- Глава 2 Динамика материальной точки и поступательного движения твердого тела § 5. Первый закон Ньютона. Масса. Сила
- § 6. Второй закон Ньютона
- § 7. Третий закон Ньютона
- § 8. Силы трения
- § 9. Закон сохранения импульса. Центр масс
- § 10. Уравнение движения тела переменной массы
- Глава 3 Работа и энергия §11. Энергия, работа, мощность
- § 12. Кинетическая и потенциальная энергии
- § 13. Закон сохранения энергии
- § 14. Графическом представление энергии
- § 15. Удар абсолютно упругих и неупругих тел
- Глава 4 Механика твердого тела § 16. Момент инерции
- § 17. Кинетическая энергия вращения
- § 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- § 19. Момент импульса и закон то сохранения
- § 20. Свободные оси. Гироскоп
- § 21. Деформации твердого тела
- Глава 5 Тяготение. Элементы теории поля § 22. Законы Кеплера. Закон всемирного тяготения
- § 23. Сила тяжести и вес. Невесомость
- § 24. Поле тяготения и то напряженность
- § 25. Работа в поле тяготения. Потенциал поля тяготения
- § 26. Космические скорости
- § 27. Неинерциальные системы отсчета. Силы инерции
- Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе
- § 29. Уравнение неразрывности
- § 30. Уравнение Бернулли и следствия из него
- § 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- § 32. Методы определения вязкости
- § 33. Движение тел в жидкостях и газах
- Глава 7 Элементы специальной (частной) теории относительности § 34. Преобразования Галилея. Механический принцип относительности
- § 35. Постулаты специальной (частной) теории относительности
- § 36. Преобразования Лоренца
- § 37. Следствия из преобразований Лоренца
- § 38. Интервал между событиями
- § 39. Основной закон релятивистской динамики материальной точки
- § 40. Закон взаимосвязи массы и энергии
- 2 Основы молекулярной физики и термодинамики Глава 8 Молекулярно-кинетическая теория идеальных газов § 41. Статистический и термодинамический методы. Опытные законы идеального газа
- § 42. Уравнение Клапейрона — Менделеева
- § 43. Основное уравнение молекулярно-кинетической теории идеальных газов
- § 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- § 45. Барометрическая формула. Распределение Больцмана
- § 46. Среднее число столкновений и средняя длина свободного пробега молекул
- § 47. Опытное обоснование молекулярно-кинетической теории
- § 48. Явления переноса в термодинамически неравновесных системах
- § 48. Вакуум и методы его получения. Свойства ультраразреженных газов
- Глава 9 Основы термодинамики § 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- § 51. Первое начало термодинамики
- § 52. Работа газа при изменении его объема
- § 53. Теплоемкость
- § 54. Применение первого начала термодинамики к изопроцессам
- § 55. Адиабатический процесс. Политропный процесс
- § 56. Круговой процесс (цикл). Обратимые и необратимые процессы
- § 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- § 58. Второе начало термодинамики
- § 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- Глава 10 Реальные газы, жидкости и твердые тела § 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- § 61. Уравнение Ван-дер-Ваальса
- § 62. Изотермы Ван-дер-Ваальса и их анализ
- § 63. Внутренняя энергия реального газа
- § 64. Эффект Джоуля — Томсона
- § 65. Сжижение газов
- § 66. Свойства жидкостей. Поверхностное натяжение
- § 67. Смачивание
- § 68. Давление под искривленной поверхностью жидкости
- § 69. Капиллярные явления
- § 70. Твердые тела. Моно- и поликристаллы
- § 71. Типы кристаллических твердых тел
- § 72. Дефекты в кристаллах
- § 73. Теплоемкость твердых тел
- § 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- § 75. Фазовые переходы I и п рода
- § 76. Диаграмма состояния. Тройная точка
- 3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- § 78. Закон Кулона
- § 79. Электростатическое поле. Напряженность электростатического поля
- § 80. Принцип суперпозиции электростатических полей. Поле диполя
- § 81. Теорема Гаусса для электростатического поля в вакууме
- § 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- § 83. Циркуляция вектора напряженности электростатического поля
- § 84. Потенциал электростатического поля
- § 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- § 86. Вычисление разности потенциалов по напряженности поля
- § 87. Типы диэлектриков. Поляризация диэлектриков
- § 88. Поляризованность. Напряженность поля в диэлектрике
- § 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- § 90. Условия на границе раздела двух диэлектрических сред
- § 91. Сегнетоэлектрики
- § 92. Проводники в электростатическом поле
- § 93. Электрическая емкость уединенного проводника
- § 94. Конденсаторы
- § 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- § 97. Сторонние силы. Электродвижущая сила и напряжение
- § 98. Закон Ома. Сопротивление проводников
- § 99. Работа и мощность тока. Закон Джоуля — Ленца
- § 100. Закон Ома для неоднородного участка цепи
- § 101. Правила Кирхгофа для разветвленных цепей
- Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- § 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- § 104. Работа выхода электронов из металла
- § 105. Эмиссионные явления и их применение
- § 106. Ионизация газов. Несамостоятельный газовый разряд
- § 107. Самостоятельный газовый разряд и его типы
- § 108. Плазма и ее свойства
- Глава 14 Магнитное поле § 109.Магнитное поле и его характеристики
- § 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- § 111. Закон Ампера. Взаимодействие параллельных токов
- § 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- § 113. Магнитное поле движущегося заряда
- § 114. Действие магнитного поля на движущийся заряд
- § 115. Движение заряженных частиц в магнитном поле
- § 116. Ускорители заряженных частиц
- § 117. Эффект Холла
- § 118. Циркуляция вектора в магнитного поляввакууме
- § 119. Магнитные поля соленоида и тороида
- § 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- § 121. Работа по перемещению проводника и контура с током в магнитном поле
- Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- § 123. Закон Фарадея и его вывод из закона сохранения энергии
- § 124. Вращение рамки в магнитном поле
- § 125. Вихревые токи (токи Фуко)
- § 126. Индуктивность контура. Самоиндукция
- § 127. Токи при размыкании и замыкании цепи
- § 128. Взаимная индукция
- § 129. Трансформаторы
- § 130. Энергия магнитного поля
- Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- § 133. Намагниченность. Магнитное поле в веществе
- § 134. Условия на границе раздела двух магнетиков
- § 135. Ферромагнетики и их свойства
- § 136. Природа ферромагнетизма
- Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- § 138. Ток смещения
- § 139. Уравнения Максвелла для электромагнитного поля
- 4 Колебания и волны Глава 18 Механические и электромагнитные колебания § 140. Гармонические колебания и их характеристики
- § 141. Механические гармонические колебания
- § 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- § 143. Свободные гармонические колебания в колебательном контуре
- § 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- § 145. Сложение взаимно перпендикулярных колебаний
- § 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- § 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- § 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- § 148. Переменный ток
- § 150. Резонанс напряжений
- § 151. Резонанс токов
- § 152. Мощность, выделяемая в цепи переменного тока
- Глава 19 Упругие волны § 153. Волновые процессы. Продольные и поперечные волны
- § 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- § 155. Принцип суперпозиции. Групповая скорость
- § 156. Интерференция волн
- § 157. Стоячиеволны
- § 158. Звуковые волны
- S159. Эффект Доплере в акустике
- § 160. Ультразвук и его применение
- Глава 20 Электромагнитные волны § 161. Экспериментальноеполучение электромагнитных волн
- § 162. Дифференциальное уравнение электромагнитной волны
- § 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- § 164. Излучение диполя. Применение электромагнитных волн
- 5 Оптика. Квантовая природа излучения Глава 21 Элементы геометрической и электронной оптики § 165. Основные законы оптики. Полное отражение
- § 166. Тонкие линзы. Изображение предметов с помощью линз
- § 187. Аберрации (погрешности) оптических систем
- § 168. Основные фотометрические величины и их единицы
- § 189. Элементы электронной оптики
- Глава 22 Интерференция света § 170. Развитие представлений о природе света
- § 171. Когерентность и монохроматичность световых волн
- § 172. Интерференция света
- § 173. Методы наблюдения интерференции света
- § 174. Интерференция света в тонких пленках
- § 175. Применение интерференции света
- Глава 23 Дифракция света § 176. Принцип Гюйгенса — Френеля
- § 177. Метод зон Френеля. Прямолинейное распространение света
- § 178. Дифракция Френеля на круглом отверстии и диске
- § 178. Дифракция Фраунгофера на одной щели
- § 180. Дифракция Фраунгофера на дифракционной решетке
- § 181. Пространственная решетка. Рассеяние света
- § 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- § 183. Разрешающая способность оптических приборов
- § 184. Понятие о голографии
- Глава 24 Взаимодействие электромагнитных волн с веществом § 185. Дисперсия света
- § 186. Электронная теория дисперсии светя
- § 187. Поглощение (абсорбция) света
- § 188. Эффект Доплера
- § 189. Излучение Вавилова — Черенкова
- Глава 25 Поляризация света § 190. Естественный и поляризованный свет
- § 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- § 192. Двойное лучепреломление
- § 193. Поляризационные призмы и поляроиды
- § 194. Анализ поляризованного света
- § 195. Искусственная оптическая анизотропия
- § 196. Вращение плоскости поляризации
- Глава 26 Квантовая природа излучения § 197. Тепловое излучение и его характеристики
- § 188. Закон Кирхгофа
- § 199. Законы Стефана — Больцмана и смещения Вина
- § 200. Формулы Рэлея — Джинса и Планка
- § 201. Оптическая пирометрия. Тепловые источники света
- § 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- § 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- § 204. Применение фотоэффекта
- § 205. Масса и импульс фотона. Давление света
- § 206. Эффект Комптона и его элементарная теория
- § 207. Единство корпускулярных и волновых свойств электромагнитного излучения
- 6 Элементы квантовой физики атомов, молекул и твердых тел Глава 27 Теория атома водорода по Бору § 208. Модели атома Томсона и Резерфорда
- § 209. Линейчатый спектр атома водорода
- § 210. Постулаты Бора
- § 211. Опыты Франка и Герца
- § 212. Спектр атома водорода по Бору
- Глава 28 Элементы квантовой механики § 213. Корпускулярно-волновой дуализм свойств вещества
- § 214. Некоторые свойства волн да Бройля
- § 215. Соотношение неопределенностей
- § 216. Волновая функция и ее статистический смысл
- § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- § 218. Принцип причинности в квинтовой механике
- § 219. Движение свободной частицы
- § 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- § 222. Линейный гармонический осциллятор в квантовой механике
- Глава 29 Элементы современной физики атомов и молекул § 223. Атом водорода в квантовой механике
- § 225. Спин электрона. Спиновое квантовое число
- § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- § 227. Принцип Паули. Распределение электронов в атоме по состояниям
- § 228. Периодическая система элементов Менделеева
- § 229. Рентгеновские спектры
- § 230. Молекулы: химические связи, понятие об энергетических уровнях
- § 231. Молекулярные спектры. Комбинационное рассеяние света
- § 232. Поглощение. Спонтанное и вынужденное излучения
- § 233. Оптические квантовые генераторы (лазеры)
- Глава 30 Элементы квантовой статистики § 234. Квантовая статистика. Фазовое пространство. Функция распределения
- § 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- § 236. Вырожденный электронный газ в металлах
- § 237. Понятие о квантовой теории теплоемкости. Фононы
- § 238. Выводы квантовой теории электропроводности металлов
- § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- Глава 31 Элементы физики твердого тела § 240. Понятие о зонной теории твердых тел
- § 241. Металлы, диэлектрики и полупроводники по зонной теории
- § 242. Собственная проводимость полупроводников
- § 243. Примесная проводимость полупроводников
- § 244. Фотопроводимость полупроводников
- § 245. Люминесценция твердых тел
- § 246. Контакт двух металлов по зонной теории
- § 247. Термоэлектрические явления и их применение
- § 248. Выпрямление на контакте металл — полупроводник
- § 249. Контакт электронного и дырочного полупроводников (p-n-переход)
- § 250. Полупроводниковые диоды и триоды (транзисторы)
- 7 Элементы физики атомного ядра и элементарных частиц Глава 32 Элементы физики атомного ядра § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- § 252. Дефект массы и энергия связи ядра
- § 253. Спин ядра и его магнитный момент
- § 254. Ядерные силы. Модели ядра
- § 255. Радиоактивное излучение и его виды
- § 256. Закон радиоактивного распада. Правила смещения
- § 257. Закономерности-распада
- § 259. Гамма-излучение и его свойства
- § 260. Резонансное поглощение-излучения (эффект Мёссбауэра*)
- § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- § 262. Ядерные реакции и их основные типы
- § 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- § 265. Реакция деления ядра
- § 266. Цепная реакция деления
- § 267. Понятие о ядерной энергетике
- § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- Глава 33 Элементы физики элементарных частиц § 269. Космическое излучение
- § 270. Мюоны и их свойства
- § 271. Мезоны и их свойства
- § 272. Типы взаимодействий элементарных частиц
- § 273. Частицы и античастицы
- § 274. Гипероны. Странность и четность элементарных частиц
- § 275. Классификация элементарных частиц. Кварки
- Заключение
- Оглавление