logo
Материалы III семестра / Курс физики

§ 73. Теплоемкость твердых тел

В качестве модели твердого тела рассмотрим правильно построенную кристалличес­кую решетку, в узлах которой частицы (атомы, ионы, молекулы), принимаемые за материальные точки, колеблются около своих положений равновесия — узлов решет­ки — в трех взаимно перпендикулярных направлениях. Таким образом, каждой состав­ляющей кристаллическую решетку частице приписывается три колебательных степени свободы, каждая из которых, согласно закону равнораспределения энергии по степеням свободы (см. § 50), обладает энергией kT.

Внутренняя энергия моля твердого тела

где NA постоянная Авогадро;NAk=R (Rмолярная газовая постоянная). Молярная теплоемкость твердого тела

(73.1)

т. е. молярная (атомная) теплоемкость химически простых телв кристаллическом

состоянии одинакова (равна 3R) и не зависит от температуры. Этот закон был эмпирически получен французскими учеными П. Дюлонгом (1785—1838) и Л. Пти (1791—1820) и носит название закона Дюлонга и Пти.

Если твердое тело является химическим соединением (например, NaCl), то число частиц в моле не равно постоянной Авогадро, а равноnNA,гдеn— число атомов в молекуле (для NaClчисло частиц в моле равно 2NA, так, в одном молеNaClсодержитсяNA атомовNaиNAатомовCl). Таким образом, молярная теплоемкостьтвердых химических соединений

т. е. равна сумме атомных теплоемкостей элементов, составляющих это соединение.

Как показывают опытные данные (табл. 4), для многих веществ закон Дю­лонга и Пти выполняется с довольно хорошим приближением, хотя некото­рые вещества (С, Be,В) имеют значи­тельные отклонения от вычисленных теплоемкостей. Кроме того, так же как и в случае газов (см. § 53), опыты по измерению теплоемкости твердых тел при низких температурах показали, что она зависит от температуры (рис. 113). Вблизи нуля кельвин теплоемкость тел пропорциональнаТ3,и только при до­статочно высоких температурах, харак­терных для каждого вещества, выполня­ется условие (73.1). Алмаз, например, имеет теплоемкость, равную 3Rпри1800 К! Однакодлябольшинства твердых тел комнатная температура является уже достаточно высокой.

Таблица 4

Расхождение опытных и теоретических значений теплоемкостей, вычисленных на основе классической теории, объяснили, исходя из квантовой теории теплоемкостей, А. Эйнштейн и П. Дебай.