§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
Практически все методы наблюдения и регистрации радиоактивных излучений (,,) и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а-кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистрировать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию.
Приборы, применяемые для регистрации радиоактивных излучений и частиц, делятся на две группы:
1) приборы, позволяющие регистрировать прохождение частицы через определенный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);
2) приборы, позволяющие наблюдать, например фотографировать, следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).
1. Сцинтилляционный счетчик.Наблюдение сцинтилляций— вспышек света при попадании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу* и Э. Резерфорду на заре ядерной физики (1903) визуально регистрировать-частицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) (см. § 245) и фотоэлектронный умножитель (см. § 105), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обычно в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для-частиц; NaI-Tl, CsI-Tl —для-частиц и-квантов) или органических (антрацен, пластмассы — для-квантов) веществ.
* У. Крукс (1832—1919) — английский физик и химик.
Сцинтилляционные счетчики обладают высоким разрешением по времени (10–10—10–5с), определяемым родом регистрируемых частиц, сцинтиллятором и разрешающим временем используемой электронной аппаратуры (оно доведено сейчас до10–8—10–10с). Для этого типа счетчиков эффективность регистрации—отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для-квантов. Так как для многих сцинтилляторов (NaI-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц.
2. Черенковский счетчик.Принцип его работы и свойства излучения Вавилова — Черенкова, лежащие в основе работы счетчика, рассмотрены в § 189. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения (см. (189.1)), можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счетчиков разрешение по скоростям (иными словами, по энергиям) составляет 10–3—10–5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10–9с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения.
3. Импульсная ионизационная камера— это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизационная камера представляет собой заполненный газом электрический конденсатор, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, в ионизационной камере на ее электродах непосредственно собираются ноны, возникшие под действием заряженных частиц. Ионизационные камеры бывают двух типов: интегрирующие(в них измеряется суммарный ионизационный ток) и импульсные,являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).
4. Газоразрядный счетчик.Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный (см. § 106), т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера — Мюллера* (в них разряд самостоятельный (см. § 107), т. е. поддерживается после прекращения действия внешнего ионизатора).
* Э. Мюллер (1911—1977) — немецкий физик.
В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольт-амперной характеристики, соответствующей несамостоятельному разряду, в которой выходной импульс пропорционален первичной ионизации, т. с. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызываемые отдельными частицами, усиливаются в 103—104раз (иногда и в 106раз).
Счетчик Гейгера — Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду (см. § 107), когда выходной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда. Временное разрешение счетчиков Гейгера—Мюллера составляет 10–3—10–7с. Для газоразрядных счетчиков эффективность регистрации равна примерно 100% для заряженных частиц и примерно 5% для-квантов.
5. Полупроводниковый счетчик — это детектор частиц, основным элементом которого является полупроводниковый диод (см. § 250). Время разрешения составляет примерно 10–9с. Полупроводниковые счетчики обладают высокой надежностью, могут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измерения высокоэнергетических частиц.
6. Камера Вильсона* (1912) — это старейший и на протяжении многих десятилетий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного расположения фотографируются стереоскопически, т. е. под разными углами. По характеру и геометрии треков можно судить о типе прошедших через камеру частиц (например,-частица оставляет сплошной жирный след,-частица — тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.
* Ч. Вильсон (1869—1959) — английский физик.
Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возможности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, составляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последующему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.
7. Диффузионная камера(1936) —это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.
8. Пузырьковая камера(1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.
9. Ядерные фотоэмульсии(1927; российский физик Л. В. Мысовский (1888—1939)) — это простейший трековый детектор заряженных частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнаруживаются в виде цепочки зерен металлического серебра. Taккак эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Так, трек длиной 0,05 см в эмульсии эквивалентен треку в 1 м в камере Вильсона. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускорителях сверхвысоких энергий и в космических лучах. В практике исследований высокоэнергетических частиц используются также так называемые стопы — большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом.
В настоящее время методы наблюдения и регистрации заряженных частиц и излучений настолько разнообразны, что их описание выходит за рамки курса.
Большое значение начинают играть сравнительно новые (1957) приборы — искровые камеры, использующие преимуществасчетчиков(быстрота регистрации) итрековых детекторов(полнота информации о треках). Говоря образно, искровая камера — это набор большого числа очень мелких счетчиков. Поэтому она близка к счетчикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц.
- Предисловие
- Введение Предмет физики и ее связь с другими науками
- Единицы физических величин
- 1 Физические основы механики Глава 1 Элементы кинематики § 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- § 2. Скорость
- § 3. Ускорение и его составляющие
- § 4. Угловая скорость и угловое ускорение
- Глава 2 Динамика материальной точки и поступательного движения твердого тела § 5. Первый закон Ньютона. Масса. Сила
- § 6. Второй закон Ньютона
- § 7. Третий закон Ньютона
- § 8. Силы трения
- § 9. Закон сохранения импульса. Центр масс
- § 10. Уравнение движения тела переменной массы
- Глава 3 Работа и энергия §11. Энергия, работа, мощность
- § 12. Кинетическая и потенциальная энергии
- § 13. Закон сохранения энергии
- § 14. Графическом представление энергии
- § 15. Удар абсолютно упругих и неупругих тел
- Глава 4 Механика твердого тела § 16. Момент инерции
- § 17. Кинетическая энергия вращения
- § 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- § 19. Момент импульса и закон то сохранения
- § 20. Свободные оси. Гироскоп
- § 21. Деформации твердого тела
- Глава 5 Тяготение. Элементы теории поля § 22. Законы Кеплера. Закон всемирного тяготения
- § 23. Сила тяжести и вес. Невесомость
- § 24. Поле тяготения и то напряженность
- § 25. Работа в поле тяготения. Потенциал поля тяготения
- § 26. Космические скорости
- § 27. Неинерциальные системы отсчета. Силы инерции
- Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе
- § 29. Уравнение неразрывности
- § 30. Уравнение Бернулли и следствия из него
- § 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- § 32. Методы определения вязкости
- § 33. Движение тел в жидкостях и газах
- Глава 7 Элементы специальной (частной) теории относительности § 34. Преобразования Галилея. Механический принцип относительности
- § 35. Постулаты специальной (частной) теории относительности
- § 36. Преобразования Лоренца
- § 37. Следствия из преобразований Лоренца
- § 38. Интервал между событиями
- § 39. Основной закон релятивистской динамики материальной точки
- § 40. Закон взаимосвязи массы и энергии
- 2 Основы молекулярной физики и термодинамики Глава 8 Молекулярно-кинетическая теория идеальных газов § 41. Статистический и термодинамический методы. Опытные законы идеального газа
- § 42. Уравнение Клапейрона — Менделеева
- § 43. Основное уравнение молекулярно-кинетической теории идеальных газов
- § 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- § 45. Барометрическая формула. Распределение Больцмана
- § 46. Среднее число столкновений и средняя длина свободного пробега молекул
- § 47. Опытное обоснование молекулярно-кинетической теории
- § 48. Явления переноса в термодинамически неравновесных системах
- § 48. Вакуум и методы его получения. Свойства ультраразреженных газов
- Глава 9 Основы термодинамики § 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- § 51. Первое начало термодинамики
- § 52. Работа газа при изменении его объема
- § 53. Теплоемкость
- § 54. Применение первого начала термодинамики к изопроцессам
- § 55. Адиабатический процесс. Политропный процесс
- § 56. Круговой процесс (цикл). Обратимые и необратимые процессы
- § 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- § 58. Второе начало термодинамики
- § 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- Глава 10 Реальные газы, жидкости и твердые тела § 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- § 61. Уравнение Ван-дер-Ваальса
- § 62. Изотермы Ван-дер-Ваальса и их анализ
- § 63. Внутренняя энергия реального газа
- § 64. Эффект Джоуля — Томсона
- § 65. Сжижение газов
- § 66. Свойства жидкостей. Поверхностное натяжение
- § 67. Смачивание
- § 68. Давление под искривленной поверхностью жидкости
- § 69. Капиллярные явления
- § 70. Твердые тела. Моно- и поликристаллы
- § 71. Типы кристаллических твердых тел
- § 72. Дефекты в кристаллах
- § 73. Теплоемкость твердых тел
- § 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- § 75. Фазовые переходы I и п рода
- § 76. Диаграмма состояния. Тройная точка
- 3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- § 78. Закон Кулона
- § 79. Электростатическое поле. Напряженность электростатического поля
- § 80. Принцип суперпозиции электростатических полей. Поле диполя
- § 81. Теорема Гаусса для электростатического поля в вакууме
- § 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- § 83. Циркуляция вектора напряженности электростатического поля
- § 84. Потенциал электростатического поля
- § 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- § 86. Вычисление разности потенциалов по напряженности поля
- § 87. Типы диэлектриков. Поляризация диэлектриков
- § 88. Поляризованность. Напряженность поля в диэлектрике
- § 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- § 90. Условия на границе раздела двух диэлектрических сред
- § 91. Сегнетоэлектрики
- § 92. Проводники в электростатическом поле
- § 93. Электрическая емкость уединенного проводника
- § 94. Конденсаторы
- § 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- § 97. Сторонние силы. Электродвижущая сила и напряжение
- § 98. Закон Ома. Сопротивление проводников
- § 99. Работа и мощность тока. Закон Джоуля — Ленца
- § 100. Закон Ома для неоднородного участка цепи
- § 101. Правила Кирхгофа для разветвленных цепей
- Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- § 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- § 104. Работа выхода электронов из металла
- § 105. Эмиссионные явления и их применение
- § 106. Ионизация газов. Несамостоятельный газовый разряд
- § 107. Самостоятельный газовый разряд и его типы
- § 108. Плазма и ее свойства
- Глава 14 Магнитное поле § 109.Магнитное поле и его характеристики
- § 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- § 111. Закон Ампера. Взаимодействие параллельных токов
- § 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- § 113. Магнитное поле движущегося заряда
- § 114. Действие магнитного поля на движущийся заряд
- § 115. Движение заряженных частиц в магнитном поле
- § 116. Ускорители заряженных частиц
- § 117. Эффект Холла
- § 118. Циркуляция вектора в магнитного поляввакууме
- § 119. Магнитные поля соленоида и тороида
- § 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- § 121. Работа по перемещению проводника и контура с током в магнитном поле
- Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- § 123. Закон Фарадея и его вывод из закона сохранения энергии
- § 124. Вращение рамки в магнитном поле
- § 125. Вихревые токи (токи Фуко)
- § 126. Индуктивность контура. Самоиндукция
- § 127. Токи при размыкании и замыкании цепи
- § 128. Взаимная индукция
- § 129. Трансформаторы
- § 130. Энергия магнитного поля
- Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- § 133. Намагниченность. Магнитное поле в веществе
- § 134. Условия на границе раздела двух магнетиков
- § 135. Ферромагнетики и их свойства
- § 136. Природа ферромагнетизма
- Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- § 138. Ток смещения
- § 139. Уравнения Максвелла для электромагнитного поля
- 4 Колебания и волны Глава 18 Механические и электромагнитные колебания § 140. Гармонические колебания и их характеристики
- § 141. Механические гармонические колебания
- § 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- § 143. Свободные гармонические колебания в колебательном контуре
- § 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- § 145. Сложение взаимно перпендикулярных колебаний
- § 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- § 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- § 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- § 148. Переменный ток
- § 150. Резонанс напряжений
- § 151. Резонанс токов
- § 152. Мощность, выделяемая в цепи переменного тока
- Глава 19 Упругие волны § 153. Волновые процессы. Продольные и поперечные волны
- § 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- § 155. Принцип суперпозиции. Групповая скорость
- § 156. Интерференция волн
- § 157. Стоячиеволны
- § 158. Звуковые волны
- S159. Эффект Доплере в акустике
- § 160. Ультразвук и его применение
- Глава 20 Электромагнитные волны § 161. Экспериментальноеполучение электромагнитных волн
- § 162. Дифференциальное уравнение электромагнитной волны
- § 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- § 164. Излучение диполя. Применение электромагнитных волн
- 5 Оптика. Квантовая природа излучения Глава 21 Элементы геометрической и электронной оптики § 165. Основные законы оптики. Полное отражение
- § 166. Тонкие линзы. Изображение предметов с помощью линз
- § 187. Аберрации (погрешности) оптических систем
- § 168. Основные фотометрические величины и их единицы
- § 189. Элементы электронной оптики
- Глава 22 Интерференция света § 170. Развитие представлений о природе света
- § 171. Когерентность и монохроматичность световых волн
- § 172. Интерференция света
- § 173. Методы наблюдения интерференции света
- § 174. Интерференция света в тонких пленках
- § 175. Применение интерференции света
- Глава 23 Дифракция света § 176. Принцип Гюйгенса — Френеля
- § 177. Метод зон Френеля. Прямолинейное распространение света
- § 178. Дифракция Френеля на круглом отверстии и диске
- § 178. Дифракция Фраунгофера на одной щели
- § 180. Дифракция Фраунгофера на дифракционной решетке
- § 181. Пространственная решетка. Рассеяние света
- § 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- § 183. Разрешающая способность оптических приборов
- § 184. Понятие о голографии
- Глава 24 Взаимодействие электромагнитных волн с веществом § 185. Дисперсия света
- § 186. Электронная теория дисперсии светя
- § 187. Поглощение (абсорбция) света
- § 188. Эффект Доплера
- § 189. Излучение Вавилова — Черенкова
- Глава 25 Поляризация света § 190. Естественный и поляризованный свет
- § 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- § 192. Двойное лучепреломление
- § 193. Поляризационные призмы и поляроиды
- § 194. Анализ поляризованного света
- § 195. Искусственная оптическая анизотропия
- § 196. Вращение плоскости поляризации
- Глава 26 Квантовая природа излучения § 197. Тепловое излучение и его характеристики
- § 188. Закон Кирхгофа
- § 199. Законы Стефана — Больцмана и смещения Вина
- § 200. Формулы Рэлея — Джинса и Планка
- § 201. Оптическая пирометрия. Тепловые источники света
- § 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- § 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- § 204. Применение фотоэффекта
- § 205. Масса и импульс фотона. Давление света
- § 206. Эффект Комптона и его элементарная теория
- § 207. Единство корпускулярных и волновых свойств электромагнитного излучения
- 6 Элементы квантовой физики атомов, молекул и твердых тел Глава 27 Теория атома водорода по Бору § 208. Модели атома Томсона и Резерфорда
- § 209. Линейчатый спектр атома водорода
- § 210. Постулаты Бора
- § 211. Опыты Франка и Герца
- § 212. Спектр атома водорода по Бору
- Глава 28 Элементы квантовой механики § 213. Корпускулярно-волновой дуализм свойств вещества
- § 214. Некоторые свойства волн да Бройля
- § 215. Соотношение неопределенностей
- § 216. Волновая функция и ее статистический смысл
- § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- § 218. Принцип причинности в квинтовой механике
- § 219. Движение свободной частицы
- § 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- § 222. Линейный гармонический осциллятор в квантовой механике
- Глава 29 Элементы современной физики атомов и молекул § 223. Атом водорода в квантовой механике
- § 225. Спин электрона. Спиновое квантовое число
- § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- § 227. Принцип Паули. Распределение электронов в атоме по состояниям
- § 228. Периодическая система элементов Менделеева
- § 229. Рентгеновские спектры
- § 230. Молекулы: химические связи, понятие об энергетических уровнях
- § 231. Молекулярные спектры. Комбинационное рассеяние света
- § 232. Поглощение. Спонтанное и вынужденное излучения
- § 233. Оптические квантовые генераторы (лазеры)
- Глава 30 Элементы квантовой статистики § 234. Квантовая статистика. Фазовое пространство. Функция распределения
- § 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- § 236. Вырожденный электронный газ в металлах
- § 237. Понятие о квантовой теории теплоемкости. Фононы
- § 238. Выводы квантовой теории электропроводности металлов
- § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- Глава 31 Элементы физики твердого тела § 240. Понятие о зонной теории твердых тел
- § 241. Металлы, диэлектрики и полупроводники по зонной теории
- § 242. Собственная проводимость полупроводников
- § 243. Примесная проводимость полупроводников
- § 244. Фотопроводимость полупроводников
- § 245. Люминесценция твердых тел
- § 246. Контакт двух металлов по зонной теории
- § 247. Термоэлектрические явления и их применение
- § 248. Выпрямление на контакте металл — полупроводник
- § 249. Контакт электронного и дырочного полупроводников (p-n-переход)
- § 250. Полупроводниковые диоды и триоды (транзисторы)
- 7 Элементы физики атомного ядра и элементарных частиц Глава 32 Элементы физики атомного ядра § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- § 252. Дефект массы и энергия связи ядра
- § 253. Спин ядра и его магнитный момент
- § 254. Ядерные силы. Модели ядра
- § 255. Радиоактивное излучение и его виды
- § 256. Закон радиоактивного распада. Правила смещения
- § 257. Закономерности-распада
- § 259. Гамма-излучение и его свойства
- § 260. Резонансное поглощение-излучения (эффект Мёссбауэра*)
- § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- § 262. Ядерные реакции и их основные типы
- § 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- § 265. Реакция деления ядра
- § 266. Цепная реакция деления
- § 267. Понятие о ядерной энергетике
- § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- Глава 33 Элементы физики элементарных частиц § 269. Космическое излучение
- § 270. Мюоны и их свойства
- § 271. Мезоны и их свойства
- § 272. Типы взаимодействий элементарных частиц
- § 273. Частицы и античастицы
- § 274. Гипероны. Странность и четность элементарных частиц
- § 275. Классификация элементарных частиц. Кварки
- Заключение
- Оглавление