§ 166. Тонкие линзы. Изображение предметов с помощью линз
Раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах, называется геометрической оптикой. Подсветовыми лучамипонимают нормальные к волновым поверхностям линии, вдоль которых распространяется поток световой энергии. Геометрическая оптика, оставаясь приближенным методом построения изображений в оптических системах, позволяет разобрать основные явления, связанные с прохождением через них света, и является поэтому основой теории оптических приборов.
Линзыпредставляют собой прозрачные тела, ограниченные двумя поверхностями (одна из них обычно сферическая, иногда цилиндрическая, а вторая — сферическая или плоская), преломляющими световые лучи, способные формировать оптические изображения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмассы и т. п. По внешней форме (рис. 232) линзы делятся на: 1) двояковыпуклые; 2) плосковыпуклые; 3) двояковогнутые; 4) плосковогнутые; 5) выпукло-вогнутые; 6) вогнуто-выпуклые. По оптическим свойствамлинзыделятся на собирающие и рассеивающие.
Линза называется тонкой,если ее толщина (расстояние между ограничивающими поверхностями) значительно меньше по сравнению с радиусами поверхностей, ограничивающих линзу. Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью.Для всякой линзы существует точка, называемаяоптическим центром линзы,лежащая на главной оптической оси и обладающая тем свойством, что лучи проходят сквозь нее не преломляясь. Оптический центрОлинзы для простоты будем считать совпадающим с геометрическим центром средней части линзы (это справедливо только для двояковыпуклой и двояковогнутой линз с одинаковыми радиусами кривизны обеих поверхностей; для плосковыпуклых и плосковогнутых линз оптический центрОлежит на пересечении главной оптической оси со сферической поверхностью).
Для вывода формулы тонкой линзы — соотношения, связывающего радиусы кривизны R1и R2поверхностей линзы с расстояниямиаиbот линзы до предмета и его изображения, — воспользуемсяпринципом Ферма,* илипринципом наименьшего времени:действительный путь распространения света (траектория светового луча) есть путь, для прохождения которого свету требуется минимальное время по сравнению с любым другим мыслимым путем между теми же точками.
* П. Ферма (1601—1665) — французский математик и физик.
Рассмотрим два световых луча (рис. 233) — луч, соединяющий точки А и В(лучАОВ),и луч, проходящий через край линзы (лучАСВ), —воспользовавшись условием равенства времени прохождения света вдольАОВиАСВ.Время прохождения света вдольАОВ
где N =n/n1— относительный показатель преломления (п и n1 —соответственно абсолютные показатели преломления линзы и окружающей среды). Время прохождения света вдольАСВравно
Так как t1= t2, то
(166.1)
Рассмотрим параксиальные (приосевые) лучи, т. е. лучи, образующие с оптической осью малые углы. Только при использовании параксиальных лучей получаетсястигматическое изображение, т. е. все лучи параксиального пучка, исходящего из точкиА, пересекают оптическую ось в одной и той же точкеВ.Тогда h<<(a+e), h<<(b+d)и
Аналогично,
Подставив найденные выражения в (166.1), получим
(166.2)
Для тонкой линзы е<<аи d<<b,поэтому (166.2) можно представить в виде
Учитывая, что и соответственно d=h2/(2R1),получим
(166.3)
Выражение (166.3) представляет собой формулу тонкой линзы. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутой — отрицательным.
Если а=, т. е. лучи падают на линзу параллельным пучком (рис. 234,а), то
Соответствующее этому случаю расстояние b=OF=f называется фокусным расстоянием линзы,определяемым по формуле
Оно зависит от относительного показателя преломления и радиусов кривизны.
Если b=, т. е. изображение находится в бесконечности и, следовательно, лучи выходят из линзы параллельным пучком (рис. 234,б), то a=OF=f.Таким образом, фокусные расстояния линзы, окруженной с обеих сторон одинаковой средой, равны. Точки F,лежащие по обе стороны линзы на расстоянии, равном фокусному, называютсяфокусами линзы. Фокус — это точка, в которой после преломления собираются все лучи, падающие на линзу параллельно главной оптической оси.
Величина
(166.4)
называется оптической силой линзы.Ее единица — диоптрия (дптр).Диоптрия— оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = 1/м.
Линзы с положительнойоптической силой являютсясобирающими, сотрицательной—рассевающими. Плоскости, проходящие через фокусы линзы перпендикулярно ее главной оптической оси, называютсяфокальными плоскостями.В отличие от собирающей рассеивающая линза имеет мнимые фокусы. В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающую линзу параллельно главной оптической оси (рис. 235).
Учитывая (166.4), формулу линзы (166.3) можно записать в виде
Для рассеивающей линзы расстояния f иbнадо считать отрицательными.
Построение изображения предмета в линзах осуществляется с помощью следующих лучей:
1) луча, проходящего через оптический центр линзы и не изменяющего своего направления;
2) луча, идущего параллельно главной оптической оси; после преломления в линзе этот луч (или его продолжение) проходит через второй фокус линзы;
3) луча (или его продолжения), проходящего через первый фокус линзы; после преломления в ней он выходит из линзы параллельно ее главной оптической оси.
Для примера приведены построения изображений в собирающей (рис. 236) и в рассеивающей (рис. 237) линзах: действительное (рис. 236, а) и мнимое (рис. 236, б) изображения — в собирающей линзе, мнимое — в рассеивающей.
Отношение линейных размеров изображения и предмета называется линейным увеличением линзы. Отрицательным значениям линейного увеличения соответствует действительное изображение (оно перевернутое), положительным — мнимое изображение (оно прямое). Комбинации собирающих и рассеивающих линз применяются в оптических приборах, используемых для решения различных научных и технических задач.
- Предисловие
- Введение Предмет физики и ее связь с другими науками
- Единицы физических величин
- 1 Физические основы механики Глава 1 Элементы кинематики § 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- § 2. Скорость
- § 3. Ускорение и его составляющие
- § 4. Угловая скорость и угловое ускорение
- Глава 2 Динамика материальной точки и поступательного движения твердого тела § 5. Первый закон Ньютона. Масса. Сила
- § 6. Второй закон Ньютона
- § 7. Третий закон Ньютона
- § 8. Силы трения
- § 9. Закон сохранения импульса. Центр масс
- § 10. Уравнение движения тела переменной массы
- Глава 3 Работа и энергия §11. Энергия, работа, мощность
- § 12. Кинетическая и потенциальная энергии
- § 13. Закон сохранения энергии
- § 14. Графическом представление энергии
- § 15. Удар абсолютно упругих и неупругих тел
- Глава 4 Механика твердого тела § 16. Момент инерции
- § 17. Кинетическая энергия вращения
- § 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- § 19. Момент импульса и закон то сохранения
- § 20. Свободные оси. Гироскоп
- § 21. Деформации твердого тела
- Глава 5 Тяготение. Элементы теории поля § 22. Законы Кеплера. Закон всемирного тяготения
- § 23. Сила тяжести и вес. Невесомость
- § 24. Поле тяготения и то напряженность
- § 25. Работа в поле тяготения. Потенциал поля тяготения
- § 26. Космические скорости
- § 27. Неинерциальные системы отсчета. Силы инерции
- Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе
- § 29. Уравнение неразрывности
- § 30. Уравнение Бернулли и следствия из него
- § 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- § 32. Методы определения вязкости
- § 33. Движение тел в жидкостях и газах
- Глава 7 Элементы специальной (частной) теории относительности § 34. Преобразования Галилея. Механический принцип относительности
- § 35. Постулаты специальной (частной) теории относительности
- § 36. Преобразования Лоренца
- § 37. Следствия из преобразований Лоренца
- § 38. Интервал между событиями
- § 39. Основной закон релятивистской динамики материальной точки
- § 40. Закон взаимосвязи массы и энергии
- 2 Основы молекулярной физики и термодинамики Глава 8 Молекулярно-кинетическая теория идеальных газов § 41. Статистический и термодинамический методы. Опытные законы идеального газа
- § 42. Уравнение Клапейрона — Менделеева
- § 43. Основное уравнение молекулярно-кинетической теории идеальных газов
- § 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- § 45. Барометрическая формула. Распределение Больцмана
- § 46. Среднее число столкновений и средняя длина свободного пробега молекул
- § 47. Опытное обоснование молекулярно-кинетической теории
- § 48. Явления переноса в термодинамически неравновесных системах
- § 48. Вакуум и методы его получения. Свойства ультраразреженных газов
- Глава 9 Основы термодинамики § 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- § 51. Первое начало термодинамики
- § 52. Работа газа при изменении его объема
- § 53. Теплоемкость
- § 54. Применение первого начала термодинамики к изопроцессам
- § 55. Адиабатический процесс. Политропный процесс
- § 56. Круговой процесс (цикл). Обратимые и необратимые процессы
- § 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- § 58. Второе начало термодинамики
- § 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- Глава 10 Реальные газы, жидкости и твердые тела § 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- § 61. Уравнение Ван-дер-Ваальса
- § 62. Изотермы Ван-дер-Ваальса и их анализ
- § 63. Внутренняя энергия реального газа
- § 64. Эффект Джоуля — Томсона
- § 65. Сжижение газов
- § 66. Свойства жидкостей. Поверхностное натяжение
- § 67. Смачивание
- § 68. Давление под искривленной поверхностью жидкости
- § 69. Капиллярные явления
- § 70. Твердые тела. Моно- и поликристаллы
- § 71. Типы кристаллических твердых тел
- § 72. Дефекты в кристаллах
- § 73. Теплоемкость твердых тел
- § 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- § 75. Фазовые переходы I и п рода
- § 76. Диаграмма состояния. Тройная точка
- 3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- § 78. Закон Кулона
- § 79. Электростатическое поле. Напряженность электростатического поля
- § 80. Принцип суперпозиции электростатических полей. Поле диполя
- § 81. Теорема Гаусса для электростатического поля в вакууме
- § 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- § 83. Циркуляция вектора напряженности электростатического поля
- § 84. Потенциал электростатического поля
- § 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- § 86. Вычисление разности потенциалов по напряженности поля
- § 87. Типы диэлектриков. Поляризация диэлектриков
- § 88. Поляризованность. Напряженность поля в диэлектрике
- § 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- § 90. Условия на границе раздела двух диэлектрических сред
- § 91. Сегнетоэлектрики
- § 92. Проводники в электростатическом поле
- § 93. Электрическая емкость уединенного проводника
- § 94. Конденсаторы
- § 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- § 97. Сторонние силы. Электродвижущая сила и напряжение
- § 98. Закон Ома. Сопротивление проводников
- § 99. Работа и мощность тока. Закон Джоуля — Ленца
- § 100. Закон Ома для неоднородного участка цепи
- § 101. Правила Кирхгофа для разветвленных цепей
- Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- § 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- § 104. Работа выхода электронов из металла
- § 105. Эмиссионные явления и их применение
- § 106. Ионизация газов. Несамостоятельный газовый разряд
- § 107. Самостоятельный газовый разряд и его типы
- § 108. Плазма и ее свойства
- Глава 14 Магнитное поле § 109.Магнитное поле и его характеристики
- § 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- § 111. Закон Ампера. Взаимодействие параллельных токов
- § 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- § 113. Магнитное поле движущегося заряда
- § 114. Действие магнитного поля на движущийся заряд
- § 115. Движение заряженных частиц в магнитном поле
- § 116. Ускорители заряженных частиц
- § 117. Эффект Холла
- § 118. Циркуляция вектора в магнитного поляввакууме
- § 119. Магнитные поля соленоида и тороида
- § 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- § 121. Работа по перемещению проводника и контура с током в магнитном поле
- Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- § 123. Закон Фарадея и его вывод из закона сохранения энергии
- § 124. Вращение рамки в магнитном поле
- § 125. Вихревые токи (токи Фуко)
- § 126. Индуктивность контура. Самоиндукция
- § 127. Токи при размыкании и замыкании цепи
- § 128. Взаимная индукция
- § 129. Трансформаторы
- § 130. Энергия магнитного поля
- Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- § 133. Намагниченность. Магнитное поле в веществе
- § 134. Условия на границе раздела двух магнетиков
- § 135. Ферромагнетики и их свойства
- § 136. Природа ферромагнетизма
- Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- § 138. Ток смещения
- § 139. Уравнения Максвелла для электромагнитного поля
- 4 Колебания и волны Глава 18 Механические и электромагнитные колебания § 140. Гармонические колебания и их характеристики
- § 141. Механические гармонические колебания
- § 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- § 143. Свободные гармонические колебания в колебательном контуре
- § 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- § 145. Сложение взаимно перпендикулярных колебаний
- § 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- § 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- § 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- § 148. Переменный ток
- § 150. Резонанс напряжений
- § 151. Резонанс токов
- § 152. Мощность, выделяемая в цепи переменного тока
- Глава 19 Упругие волны § 153. Волновые процессы. Продольные и поперечные волны
- § 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- § 155. Принцип суперпозиции. Групповая скорость
- § 156. Интерференция волн
- § 157. Стоячиеволны
- § 158. Звуковые волны
- S159. Эффект Доплере в акустике
- § 160. Ультразвук и его применение
- Глава 20 Электромагнитные волны § 161. Экспериментальноеполучение электромагнитных волн
- § 162. Дифференциальное уравнение электромагнитной волны
- § 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- § 164. Излучение диполя. Применение электромагнитных волн
- 5 Оптика. Квантовая природа излучения Глава 21 Элементы геометрической и электронной оптики § 165. Основные законы оптики. Полное отражение
- § 166. Тонкие линзы. Изображение предметов с помощью линз
- § 187. Аберрации (погрешности) оптических систем
- § 168. Основные фотометрические величины и их единицы
- § 189. Элементы электронной оптики
- Глава 22 Интерференция света § 170. Развитие представлений о природе света
- § 171. Когерентность и монохроматичность световых волн
- § 172. Интерференция света
- § 173. Методы наблюдения интерференции света
- § 174. Интерференция света в тонких пленках
- § 175. Применение интерференции света
- Глава 23 Дифракция света § 176. Принцип Гюйгенса — Френеля
- § 177. Метод зон Френеля. Прямолинейное распространение света
- § 178. Дифракция Френеля на круглом отверстии и диске
- § 178. Дифракция Фраунгофера на одной щели
- § 180. Дифракция Фраунгофера на дифракционной решетке
- § 181. Пространственная решетка. Рассеяние света
- § 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- § 183. Разрешающая способность оптических приборов
- § 184. Понятие о голографии
- Глава 24 Взаимодействие электромагнитных волн с веществом § 185. Дисперсия света
- § 186. Электронная теория дисперсии светя
- § 187. Поглощение (абсорбция) света
- § 188. Эффект Доплера
- § 189. Излучение Вавилова — Черенкова
- Глава 25 Поляризация света § 190. Естественный и поляризованный свет
- § 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- § 192. Двойное лучепреломление
- § 193. Поляризационные призмы и поляроиды
- § 194. Анализ поляризованного света
- § 195. Искусственная оптическая анизотропия
- § 196. Вращение плоскости поляризации
- Глава 26 Квантовая природа излучения § 197. Тепловое излучение и его характеристики
- § 188. Закон Кирхгофа
- § 199. Законы Стефана — Больцмана и смещения Вина
- § 200. Формулы Рэлея — Джинса и Планка
- § 201. Оптическая пирометрия. Тепловые источники света
- § 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- § 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- § 204. Применение фотоэффекта
- § 205. Масса и импульс фотона. Давление света
- § 206. Эффект Комптона и его элементарная теория
- § 207. Единство корпускулярных и волновых свойств электромагнитного излучения
- 6 Элементы квантовой физики атомов, молекул и твердых тел Глава 27 Теория атома водорода по Бору § 208. Модели атома Томсона и Резерфорда
- § 209. Линейчатый спектр атома водорода
- § 210. Постулаты Бора
- § 211. Опыты Франка и Герца
- § 212. Спектр атома водорода по Бору
- Глава 28 Элементы квантовой механики § 213. Корпускулярно-волновой дуализм свойств вещества
- § 214. Некоторые свойства волн да Бройля
- § 215. Соотношение неопределенностей
- § 216. Волновая функция и ее статистический смысл
- § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- § 218. Принцип причинности в квинтовой механике
- § 219. Движение свободной частицы
- § 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- § 222. Линейный гармонический осциллятор в квантовой механике
- Глава 29 Элементы современной физики атомов и молекул § 223. Атом водорода в квантовой механике
- § 225. Спин электрона. Спиновое квантовое число
- § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- § 227. Принцип Паули. Распределение электронов в атоме по состояниям
- § 228. Периодическая система элементов Менделеева
- § 229. Рентгеновские спектры
- § 230. Молекулы: химические связи, понятие об энергетических уровнях
- § 231. Молекулярные спектры. Комбинационное рассеяние света
- § 232. Поглощение. Спонтанное и вынужденное излучения
- § 233. Оптические квантовые генераторы (лазеры)
- Глава 30 Элементы квантовой статистики § 234. Квантовая статистика. Фазовое пространство. Функция распределения
- § 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- § 236. Вырожденный электронный газ в металлах
- § 237. Понятие о квантовой теории теплоемкости. Фононы
- § 238. Выводы квантовой теории электропроводности металлов
- § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- Глава 31 Элементы физики твердого тела § 240. Понятие о зонной теории твердых тел
- § 241. Металлы, диэлектрики и полупроводники по зонной теории
- § 242. Собственная проводимость полупроводников
- § 243. Примесная проводимость полупроводников
- § 244. Фотопроводимость полупроводников
- § 245. Люминесценция твердых тел
- § 246. Контакт двух металлов по зонной теории
- § 247. Термоэлектрические явления и их применение
- § 248. Выпрямление на контакте металл — полупроводник
- § 249. Контакт электронного и дырочного полупроводников (p-n-переход)
- § 250. Полупроводниковые диоды и триоды (транзисторы)
- 7 Элементы физики атомного ядра и элементарных частиц Глава 32 Элементы физики атомного ядра § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- § 252. Дефект массы и энергия связи ядра
- § 253. Спин ядра и его магнитный момент
- § 254. Ядерные силы. Модели ядра
- § 255. Радиоактивное излучение и его виды
- § 256. Закон радиоактивного распада. Правила смещения
- § 257. Закономерности-распада
- § 259. Гамма-излучение и его свойства
- § 260. Резонансное поглощение-излучения (эффект Мёссбауэра*)
- § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- § 262. Ядерные реакции и их основные типы
- § 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- § 265. Реакция деления ядра
- § 266. Цепная реакция деления
- § 267. Понятие о ядерной энергетике
- § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- Глава 33 Элементы физики элементарных частиц § 269. Космическое излучение
- § 270. Мюоны и их свойства
- § 271. Мезоны и их свойства
- § 272. Типы взаимодействий элементарных частиц
- § 273. Частицы и античастицы
- § 274. Гипероны. Странность и четность элементарных частиц
- § 275. Классификация элементарных частиц. Кварки
- Заключение
- Оглавление