logo
Материалы III семестра / Курс физики

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта — явле­ния, открытие и исследование которого сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный. Внешним фотоэлектрическим эффектом (фотоэффектом)называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в тве­рдых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка уль­трафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 289. Два электрода (катод Киз исследуемого металла и анодА —в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к бата­рее так, что с помощью потенциометра Rможно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени: 1) на­иболее эффективное действие оказывает ультрафиолетовое излучение; 2) под действи­ем света вещество теряет только отрицательные заряды; 3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. измерил удельный заряд испускаемых под действием света частиц (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Внутренний фотоэффект— это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свобод­ные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости(повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникнове­нию э.д.с.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффек­та, — возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупро­водников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преоб­разования солнечной энергии в электрическую.

На рис. 289 приведена экспериментальная установка для исследования вольт-ампер­ной характеристики фотоэффекта— зависимости фототокаI, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения Uмежду электродами. Такая зависимость, соответствующая двум различным освещенностямЕ,катода (частота света в обоих случаях одинакова), приведена на рис. 290. По мере увеличенияUфототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение токаIнас фототок насы­щения— определяется таким значениемU,при котором все электроны, испускаемые катодом, достигают анода:

где n— число электронов, испускаемых катодом в 1 с.

(202.1)

Из вольт-амперной характеристики следует, что при U=0фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v,а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U0.ПриU=U0ни один из электронов, даже обладающий при вылете из катода максимальной скоростьюvmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

т. е., измерив задерживающее напряжение U0,можно определить максимальные значе­ния скорости и кинетической энергии фотоэлектронов.

При изучении вольт-амперных характеристик разнообразных материалов (важна чистота поверхности, поэтому измерения проводятся в вакууме и на свежих поверх­ностях) при различных частотах падающего на катод излучения и различных энер­гетических освещенностях катода и обобщения полученных данных были установлены следующие три закона внешнего фотоэффекта.

I. Закон Столетова:при фиксированной частоте падающего света число фотоэлект­ронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенностиЕека­тода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энер­гия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой .

III. Для каждого вещества существуеткрасная границафотоэффекта, т. е. мини­мальная частота 0 света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электро­ны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырыва­емого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит IIзакону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречитIIIзакону фотоэффекта. Кроме того, волновая теория не смогла объяснитьбезынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.