logo
Материалы III семестра / Курс физики

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

1. Закон Ома.Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Coстороны поля зарядеиспытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m.Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где t— среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с иона­ми решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядочен­ного движения становится равной нулю. Следовательно, средняя скорость направлен­ного движения электрона

(103.1)

Классическая теория металлов не учитывает распределения электронов по скоро­стям, поэтому среднее время tсвободного пробега определяется средней длиной свободного пробегаlи средней скоростью движения электронов относительно кристаллической решетки проводника, равной u +v (u —средняя скорость теп­лового движения электронов). В § 102 было показано, что v<<u, поэтому

Подставив значение tв формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получи­ли закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональ­ности между j и Eесть не что иное, как удельная проводимость материала

(103.2)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца.К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

(103.3)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем zсто­лкновений:

(103.4)

Если n— концентрация электронов, то в единицу времени происходитпz столкнове­ний и решетке передается энергия

(103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

(103.6)

Величина wявляется удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности междуwи E2по (103.2) есть удельная проводимость; следовате­льно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон Видемана Франца.Металлы обладают как большой электропровод­ностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы—свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности () к удельной проводимости () для всех металлов при одной и той же температуре одинаково и увеличивается пропорциональ­но термодинамической температуре:

где постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение :=3(k/e)2,где kпостоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил =2(k/e)2,что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опыт­ных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления.Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональ­ная, должна возрастать пропорционально (в (103.2)пиlот температуры не зависят, аu~ ). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T(см. § 98).

Оценка средней длины свободного пробега электронов в металлах.Чтобы по фор­муле (103.2) получить, совпадающие с опытными значениями, надо приниматьlзначительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.

Теплоемкость металлов.Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Со­гласно закону Дюлонга и Пти (см. § 73), теплоемкость одноатомного кристалла равна 3R.Учтем, что теплоемкость одноатомного электронного газа равна3/2R.Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классичес­кой электронной теорией.

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности метал­лов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концент­рации электронов проводимости и высокой температуре) она дает правильные качест­венные результаты и является по сравнению с квантовой теорией простой и нагляд­ной.