logo
Материалы III семестра / Курс физики

§ 105. Эмиссионные явления и их применение

Если сообщить электронам в металлах энергию, необходимую для преодоления рабо­ты выхода, то часть электронов может покинуть металл, в результате чего наблюдает­ся явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вто­ричную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия— это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энерги­ям) некоторые электроны обладают энергией, достаточной для преодоления потенци­ального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно провести с по­мощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катодKи анодА.В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накали­ваемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареиБа, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависи­мость анодного тока Iаот анодного напряженияUа, — вольт-амперную характеристику (рис. 153), то оказывается, что она не является линейной, т. е. для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного токаIот анодного напряжения в области малых положительных значений Uописывается законом трех вторых(установлен русским физиком С. А. Богуславским (1883—1923) и американским физиком И. Ленгмюром (1881—1957)):

где В—коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максималь­ного значения Iнас, называемоготоком насыщения. Это означает, что почти все электро­ны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряжен­ности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Плотность тока насыщения определяется формулой Ричардсона — Дешмана,выве­денной теоретически на основе квантовой статистики:

где А —работа выхода электронов из катода,T — термодинамическая температура,С— постоянная, теоретически одинаковая доя всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Умень­шение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочно-земельного металла), работа выхода которых равна 1—1,5 эВ.

На рис. 153 представлены вольт-амперные характеристики для двух температур катода: Т1иT2, причемТ21. Сповышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Uа=0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, облада­ют энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля.

Явление термоэлектронной эмиссии используется в приборах, в которых необ­ходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирова­ния электромагнитных колебаний в т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

2. Фотоэлектронная эмиссия— это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновс­кого). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.

3. Вторичная электронная эмиссия— это испускание электронов поверхностью ме­таллов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — эле­ктронов, выбитых из металла, полупроводника или диэлектрика первичными электро­нами.

Отношение числа вторичных электронов n2к числу первичныхn1,вызвавших эмиссию, называетсякоэффициентом вторичной электронной эмиссии:

Коэффициент зависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриковболь­ше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторичные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.

Для примера на рис. 154 приведена качественная зависимость коэффициента вто­ричной электронной эмиссии от энергииЕпадающих электронов для КСl. С увеличе­нием энергии электронов возрастает, так как первичные электроны все глубже проникают в кристаллическую решетку и, следовательно, выбивают больше вторичных электронов. Однако при некоторой энергии первичных электроновначинает умень­шаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значениеmax для КCl достигает12 (для чистых металлов оно не превышает 2).

Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях(ФЭУ), применимых для усиления слабых электрических токов. ФЭУ представ­ляет собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов —эмиттеров(рис. 155). Электроны, вырванные из фотокатода под действием света, попадают на эмиттер Э1,пройда ускоряющую разность потенциалов между К и Э1. Из эмиттера Э1выбиваетсяэлектронов. Усиленный таким образом электронный поток направляется на эмиттер Э2, и процесс умножения повторяется на всех последующих эмиттерах. Если ФЭУ содержитnэмит­теров, то на аноде А, называемом коллектором,получается усиленный в nраз фотоэлектронный ток.

4. Автоэлектронная эмиссия— это эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигурация электродов которой (катод — острие, анод — вну­тренняя поверхность трубки) позволяет при напряжениях примерно 103В получать электрические поля напряженностью примерно 107В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 105—106В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление называется также холодной эмиссией. Объяснение механизма этого явления возможно лишь на основе квантовой теории.