logo
Материалы III семестра / Курс физики

§ 214. Некоторые свойства волн да Бройля

Рассмотрим свободно движущуюся со скоростью vчастицу массойт.Вычислим для нее фазовую и групповую скорости волн да Бройля. Фазовая скорость, согласно (154.8),

(214.1)

(E=ћ и p=ћk,где k=2/волновое число). Так как c>v,то фазовая скорость волн де Бройля больше скорости света в вакууме (фазовая скорость волн может быть как меньше, так и большесв отличие от групповой скорости волн (см. § 155)). Групповая скорость, согласно (155.1),

Для свободной частицы (см. (40.7)) и

Следовательно, групповая скорость волн де Бройля равна скорости частицы.

Групповая скорость фотона т. е. равна скорости самого фотона.

Волны да Бройля испытывают дисперсию (см. § 154). Действительно, подставив в выражение (214.1) vфаз=E/pформулу (40.7)Е= ,увидим, что скорость волн де Бройля зависит от длины волны. Это обстоятельство сыграло в свое время большую роль в развитии положений квантовой механики. После установления корпускулярно-волнового дуализма делались попытки связать корпускулярные свойства частиц с волновыми и рассматривать частицы как «узкие» волновые пакеты (см. § 155), «составленные» из волн де Бройля. Это позволяло как бы отойти от двойственности свойств частиц. Такая гипотеза соответствовала локализации частицы в данный мо­мент времени в определенной ограниченной области пространства. Аргументом в пользу этой гипотезы являлось и то, что скорость распространения центра пакета (групповая скорость) оказалась, как показано выше, равной скорости частицы. Однако подобное представление частицы в виде волнового пакета (группы волн де Бройля) оказалось несостоятельным из-за сильной дисперсии волн де Бройля, приводящей к «быстрому расплыванию» (примерно 10–26с!) волнового пакета или даже разделе­нию его на несколько пакетов.