logo
Материалы III семестра / Курс физики

§ 222. Линейный гармонический осциллятор в квантовой механике

Линейный гармонический осциллятор— система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории (см. § 142). Пружинный, физический и мате­матический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора (см. (141.5)) равна

(222.1)

где 0 собственная частота колебаний осциллятора,т —масса частицы. Зависи­мость (222.1) имеет вид параболы (рис. 300), т. е. «потенциальная яма» в данном случае является параболической.

Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е(см. рис. 16). В точках с координатами ±xmaxполная энергияЕравна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (–xmax, +xmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в «потенци­альной яме» с координатами– xmax<х< xmax«без права выхода» из нее.

Гармонический осциллятор в квантовой механике — квантовый осциллятор— опи­сывается уравнением Шредингера (217.5), учитывающим выражение (222.1) для потен­циальной энергии. Тогда стационарные состояния квантового осциллятора определя­ются уравнением Шредингера вида

(222.2)

где Е —полная энергия осциллятора. В теории дифференциальных уравнений до­казывается, что уравнение (222.2) решается только при собственных значениях энергии

(222.3)

Формула (222.3) показывает, что энергия квантового осциллятора может иметь лишь дискретные значения, т. е.квантуется. Энергия ограничена снизу отличным от нуля, как и для прямоугольной «ямы» с бесконечно высокими «стенками» (см. § 220), минималь­ным значением энергии E0=1/2ћ0.Существование минимальной энергии — она назы­ваетсяэнергиейнулевых колебаний— является типичной для квантовых систем и пред­ставляет собой прямое следствие соотношения неопределенностей.

Наличие нулевых колебаний означает, что частица не может находиться на дне «потенциальной ямы», причем этот вывод не зависит от ее формы. В самом деле, «падение на дно ямы» связано с обращением в нуль импульса частицы, а вместе с тем и его неопределенности. Тогда неопределенность координаты становится сколь угодно большой, что противоречит, в свою очередь, пребыванию частицы в «потенциальной яме».

Вывод о наличии энергии нулевых колебаний квантового осциллятора противоре­чит выводам классической теории, согласно которой наименьшая энергия, которую может иметь осциллятор, равна нулю (соответствует покоящейся в положении равно­весия частице). Например, классическая физика приводит к выводу, что при Т=0 энергия колебательного движения атомов кристалла должна обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное колебаниями атомов. Однако эксперимент показывает, что интенсивность рассеяния света при понижении температуры не равна нулю, а стремится к некоторому предельному значению, указывающему на то, что приТ0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний.

Из формулы (222.3) также следует, что уровни энергии линейного гармонического осциллятора расположены на одинаковых расстояниях друг от друга (рис. 300), а имен­но расстояние между соседними энергетическими уровнями равно ћ0,причем мини­мальное значение энергии E0=1/2ћ0.

Строгое решение задачи о квантовом осцилляторе приводит еще к одному значи­тельному отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области |x|xmax(см. рис. 16), в то время как с классической точки зрения она не может выйти за пределы области (–xmax, +xmax).Таким образом, имеется отличная от нуля вероят­ность обнаружить частицу в той области, которая является классически запрещенной. Этот результат (без его вывода) демонстрируется на рис. 301, где приводится кван­товая плотность вероятности wобнаружения осциллятора для состоянияп=1. Из рисунка следует, что для квантового осциллятора действительно плотность вероятности wимеет конечные значения за пределами классически дозволенной области|x|xmax,т.е. имеется конечная (но небольшая) вероятность обнаружить частицу в области за пределами «потенциальной ямы». Существование отличных от нуля значенийwза пределами «потенциальной ямы» объясняется возможностью прохожде­ния микрочастиц сквозь потенциальный барьер (см. § 221).