logo search
Материалы III семестра / Курс физики

§ 61. Уравнение Ван-дер-Ваальса

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона — Менделеева (42.4) pVm=RT(для моля газа), описывающее идеаль­ный газ, для реальных газов непригодны.

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837—1923) вывел уравнение состояния реаль­ного газа. Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.

1. Учет собственного объема молекул.Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет неVm,аVmb, гдеbобъем, занимаемый самими молекулами.

Объем bравенучетверенному собственному объему молекул.Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметраdмолекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиусаd,т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в рас­чете на одну молекулу.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е.

(61.1)

где а —постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения,Vmмолярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальсадля моля газа (уравнение состояния реальных газов):

(61.2)

Для произвольного количества вещества vгаза (v=m/M) сучетом того, чтоV=vVm, уравнение Ван-дер-Ваальса примет вид

где поправки аиbпостоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состоя­ний газа и решаются относительноаиb).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

Уравнение Ван-дер-Ваальса не единственное уравнение, описывающее реальные газы. Существу­ют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматрива­ются из-за их сложности.