logo search
Материалы III семестра / Курс физики

§ 229. Рентгеновские спектры

Большую роль в выяснении строения атома, а именно распределения электронов по оболочкам, сыграло излучение, открытое в 1895 г. немецким физиком В. Рентгеном (1845—1923) и названное рентгеновским.Самым распространенным источником рент­геновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяже­лых металлов, например Wили Pt),испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10–12—10–8м. Волновая природа рентгеновского излучения доказана опытами по его дифракции, рассмотренными в § 182.

Исследование спектрального состава рентгеновского излучения показывает, что его спектр имеет сложную структуру (рис. 306) и зависит как от энергии электронов, так и от материала анода. Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей min, называемойграницей сплошного спектра,и линейчатого спектра — совокупности отдельных линий, появляющихся на фоне сплошного спектра.

Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром. Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.

Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, что чем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньшеmin. Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е.

где Uразность потенциалов, за счет которой электрону сообщается энергияЕmax,max —частота, соответствующая границе сплошного спектра. Отсюда граничная дли­на волны

(229.1)

что полностью соответствует экспериментальным данным. Измеряя границу рент­геновского сплошного спектра, по формуле (229.1) можно определить эксперименталь­ное значение постоянной Планка h, которое наиболее точно совпадает с современными данными.

При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии — линейчатый спектр, опреде­ляемый материалом анода и называемый характеристическим рентгеновским спектром (излучением).

По сравнению с оптическими спектрами характеристические рентгеновские спектры элементов совершенно однотипны и состоят из нескольких серий, обозначаемых К, L, М, и O.Каждая серия, в свою очередь, содержит небольшой набор отдельных линий, обозначаемых в порядке убывания длины волны индексами, , ,... (К, К, К,.... L, L, L,...). При переходе от легких элементов к тяжелым структура характеристичес­кого спектра не изменяется, лишь весь спектр смещается в сторону коротких волн. Особенность этих спектров заключается в том, что атомы каждого химического элемента, независимо от того, находятся ли они в свободном состоянии или входят в химическое соединение, обладают определенным, присущим только данному элемен­ту линейчатым спектром характеристического излучения. Так, если анод состоит из нескольких элементов, то и характеристическое рентгеновское излучение представляет собой наложение спектров этих элементов.

Рассмотрение структуры и особенностей характеристических рентгеновских спек­тров приводит к выводу, что их возникновение связано с процессами, происходящими во внутренних, застроенных электронных оболочках атомов, которые имеют сходное строение.

Разберем механизм возникновения рентгеновских серий, который схематически показан на рис. 307. Предположим, что под влиянием внешнего электрона или высокоэнергетического фотона вырывается один из двух электронов K-оболочки атома. Тогда на его место может перейти электрон с более удаленных от ядра оболочек L, M, N,.... Такие переходы сопровождаются испусканием рентгеновских квантов и возникновени­ем спектральных линийК-серии: К (LK), K (MK), K (NK)и т. д. Самой длинно­волновой линиейК-серии является линияK. Частоты линий возрастают в рядуK K K,поскольку энергия, высвобождаемая при переходе электрона наK-оболочку с более удаленных оболочек, увеличивается. Наоборот, интенсивности линий в рядуK K Kубывают, так как вероятность переходов электронов сL-оболочки на K-оболочку больше, чем с более удаленных оболочекМ и N. К-серия сопровождается обязательно другими сериями, так как при испускании ее линий появляются вакансии в оболочкахL, M,..., которые будут заполняться электронами, находящимися на более высоких уровнях.

Аналогично возникают и другие серии, наблюдаемые, впрочем, только для тяже­лых элементов. Рассмотренные линии характеристического излучения могут иметь тонкую структуру, поскольку уровни, определяемые главным квантовым числом, расщепляются согласно значениям орбитального и магнитного квантовых чисел.

Исследуя рентгеновские спектры элементов, английский физик Г. Мозли (1887—1915) установил в 1913 г. соотношение, называемое законом Мозли:

(229.2)

где —частота, соответствующая данной линии характеристического рентгеновского излучения, R— постоянная Ридберга, постоянная экранирования,т = 1, 2, 3, ... (определяет рентгеновскую серию),nпринимает целочисленные значения начиная сm+1 (определяет отдельную линию соответствующей серии). Закон Мозли (229.2) подобен обобщенной формуле Бальмера (209.3) для атома водорода.

Смысл постоянной экранирования заключается в том, что на электрон, совершающий переход, соответствующий некоторой линии, действует не весь заряд ядра Zе, а заряд (Z)e,ослабленный экранирующим действием других электронов. Напри­мер, дляK-линии = 1, и закон Мозли запишется в виде