logo search
Материалы III семестра / Курс физики

§ 27. Неинерциальные системы отсчета. Силы инерции

Как уже отмечалось (см. § 5, 6), законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными.В неинерциальных системах законы Нью­тона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода — так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции Fинпри этом должны быть такими, чтобы вместе с силамиF, обуслов­ленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е.

(27.1)

Так как F=ma(a— ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движении системы отсчета.Пусть на тележке к штативу на нити подвешен шарик массойт(рис. 40). Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции нити Т.

Если тележку привести в поступательное движение с ускорением а0, то нить начнет отклоняться от вертикали назад до такого угла, пока результирующая силаF=P+Tне обеспечит ускорение шарика, равное а0. Таким образом, результирующая силаFнаправлена в сторону ускорения тележки а0и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением а0) равнаF=mgtg=ma0, откуда

т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fи, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(27.2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции,действующие натело, покоящееся вовращающейся системе отсчета.Пусть диск равномерно вращается с угловой скоростью (=const)вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массойm). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол (рис. 41).

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R(расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, равнаяF=m2Rи направленная перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы натяжения нити Т: F=P+T.Когда движение шарика установится, тоF=mgtg=m2R,откуда

т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние Rот центра шарика до оси вращения диска и чем больше угловая скорость вращения.

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возмож­но, если сила F уравновешивается равной и противоположно направленной ей силой Fц, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. СилаFц, называемая центробежнойсилой инерции, направлена по горизонтали от оси вращения диска и равна

(27.3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания це­нтробежных сил инерции.

Из формулы (27.3) вытекает, что центробежная сила инерции, действующая на тела во враща­ющихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения системы отсчета и радиусаR, но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массойmдвижется с постоянной скоростьюv' вдоль радиуса равномерно вращающегося диска (v'=coast, =const,v'). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точкуА,если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривойOВ(рис. 42, а), причем его скоростьv' относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скоростиv'.

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равно­мерно и прямолинейно со скоростьюv'(рис. 42,б).При отклонении шарика стержень действует на него с некоторой силойF. Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила F уравновешивается приложенной к шарику силой инерцииFк, перпендикулярной скоростиv'. Эта сила называется кориолисовой силой инерции.

Можно показать, что сила Кориолиса*

(27.4)

* Г. Кориолис (1792—1843) — французский физик и инженер.

Вектор Fк перпендикулярен векторам скоростиv' тела и угловой скорости вращениясистемы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север (рис. 43), то действующая на него сила Кориолиса, как это следует из выражения (27.4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, дейст­вующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверх­ности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

Раскрывая содержание Fиив формуле (27.1), получимосновной закон динамики для неинерциальных систем отсчета:

где силы инерции задаются формулами (27.2) — (27.4).

Обратим еще раз внимание на то, что силы инерции вызываютсяне взаимодействи­ем тел, аускоренным движением системы отсчета.Поэтому они не подчиняются третьему закону Ньютона, так как если на какое-либо тело действует сила инерции, то не существует противодействующей силы, приложенной к данному телу. Два основных положения механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса. Таким образом, силы инерции действуют только в неинерциальных системах. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о «реальности» или «фиктивности» сил инерции. В ньютоновской механике, согласно которой сила есть результат взаимодействия тел, на силы инерции можно смотреть как на «фиктивные», «исчезающие» в инерциальных системах отсчета. Однако возможна и другая их интерпретация. Так как взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать «реальными». Независимо от того, рассматриваются ли силы инерции в качестве «фиктивных» или «реальных», многие явления, о которых упоминалось в настоящем параграфе, объясняются с помощью сил инерции.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, находящиеся под действием сил поля тяготения.

При некоторых условиях силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштей­на): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответст­вующих точках пространства совпадают, а прочие начальные условия для рассмат­риваемых тел одинаковы. Этот принцип является основой общей теории относитель­ности.

Задачи

5.1. Два одинаковых однородных шара из одинакового материала, соприкасаясь друг с другом, притягиваются. Определить, как изменится сила притяжения, если массу шаров увеличить в n=4 раза. [Возрастет в 6,35 раза]

5.2. Плотность вещества некоторой шарообразной планеты составляет 3 г/см3. Каким должен быть период обращения планеты вокруг собственной оси, чтобы на экваторе тела были не­весомыми? [Т==1,9 ч]

5.3. Определить, в какой точке (считая от Земли) на прямой, соединяющей центры Земли и Луны, напряженность поля тяготения равна нулю. Расстояние между центрами Земли и Луны равно R,масса Земли в 81 раз больше массы Луны. [0,9R]

5.4. Два одинаковых однородных шара из одинакового материала соприкасаются друг с дру­гом. Определить, как изменится потенциальная энергия их гравитационного взаимодействия, если массу шаров увеличить в четыре раза. [Возрастет в 14,6 раза]

5.5. Два спутника одинаковой массы движутся вокруг Земли по круговым орбитам радиусов R1иR2. Определить: 1) отношение полных энергий спутников (E1/E2); 2) отношение их моментов импульса (L1/L2). [1) R2/R1;2) ]

5.6. Вагон катится вдоль горизонтального участка дороги. Сила трения составляет 20% от веса вагона. К потолку вагона на нити подвешен шарик массой 10 г. Определить: 1) силу, дей­ствующую на нить; 2) угол отклонения нити от вертикали. [1) 0,10 Н; 2) 11°35']

5.7. Тело массой 1,5 кг, падая свободно в течение 5 с, попадает на Землю в точку с географиче­ской широтой =45°. Учитывая вращение Земли, нарисовать и определить все силы, дей­ствующие на тело в момент его падения на Землю. [1) 14,7 Н; 2) 35,7 Н; 3) 7,57 мН]