logo search
Материалы III семестра / Курс физики

§ 157. Стоячиеволны

Особым случаем интерференции являются стоячее волны— это волны, образующиеся при наложении двух бегущих воли, распространяющихся навстречу друг другу с оди­наковыми частотами и амплитудами, а в случае поперечных волн и одинаковой поляризацией.

Для вывода уравнения стоячей волны предположим, что две плоские волны рас­пространяются навстречу друг другу вдоль оси хв среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления осих,и волны, распространяющейся ей навстречу, будут иметь вид

(157.1)

Сложив эти уравнения и учитывая, что k=2v/X (см.(154.3)), получим уравнениестоячейволны:

(157.2)

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты с амплитудой Aст=|2А cos (2х/)|,зависящей от координатыхрассматриваемой точки.

В точках среды, где

(157.3)

амплитуда колебаний достигает максимального значения, равного 2А.В точках среды, где

(157.4)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (Аст=2А), называютсяпучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю (Aст=0), называютсяузлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов:

(157.5)

(157.6)

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны /2. Расстояние между сосед­ними пучностью и узлом стоячей волны равно/4.

В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе(в уравнении (157.1) бегущей волны фаза колебаний зависит от координатыхрассматриваемой точки), все точки стоячей волны между двумя узлами колеблютсяс разными амплитудами,но содинаковыми фазами(в уравнении (157.2) стоячей волны аргумент косинуса не зависит отх). При переходе через узел множитель 2Acos(2x/)меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на, т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае возникает узел. Будет ли на границе отражения узел или пучность, зависит от соот­ношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникает пучность (рис. 222, а),если более плот­ная — узел (рис. 222,б).Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний с противоположными фазами, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у гра­ницы колебания складываются с одинаковыми фазами — образуется пучность.

Если рассматривать бегущую волну, то в направлении ее распространения перено­сится энергия колебательного движения. В случае же стоячей волны переноса энергии нет,так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превра­щения кинетической энергии в потенциальную и обратно.