logo search
Материалы III семестра / Курс физики

Глава 22 Интерференция света § 170. Развитие представлений о природе света

Основные законы оптики известны еще с древних веков. Так, Платон (430 г. до н. э.) установил закон прямолинейного распространения и закон отражения света. Аристо­тель (350 г. до н. э.) и Птоломей изучали преломление света. Первые представления о природе света возникли у древних греков и египтян, которые в дальнейшем, по мере изобретения и усовершенствования различных оптических инструментов, например параболических зеркал (XIII в.), фотоаппарата и микроскопа (XVI в.), зрительной трубы (XVII в.), развивались и трансформировались. В конце XVII в. на основе многовекового опыта и развития представлений о свете возникли две теориисвета:корпускулярная(И. Ньютон) иволновая(Р. Гук и X. Гюйгенс).

Согласно корпускулярной теории (теории истечения), свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолиней­ным траекториям. Движение световых корпускул Ньютон подчинил сформулирован­ным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдается закон равенства углов падения в отражения. Преломление света Ньютон объяснял притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало постоянство синуса угла падения i1к синусу угла преломления i2:

(170.1)

где с— скорость распространения света в вакууме, v —скорость распространения света в среде. Так какnв среде всегда больше единицы, то,по теории Ньютона, v>c,т. е. скорость распространения света в среде должна быть всегда больше скоро­сти его распространения в вакууме.

Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде — эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами — упругостью и плотностью. Согласно Гюй­генсу, большая скорость распространения света обусловлена особыми свойствами эфира.

Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих воли дает положе­ние волнового фронта в следующий момент времени. Напомним, что волновым фронтом называется геометрическое место точек, до которых доходят колебания к моменту времени t.Принцип Гюйгенса позволяет анализировать распространение света и вывести законы отражения и преломления.

Выведем законы отражения и преломления света, исходя из принципа Гюйгенса. Пусть на границу раздела двух сред падает плоская волна (фронт волны — плоскость ),распространя­ющаяся вдоль направленияI(рис. 243). Когда фронт волны достигнет отражающей поверхности в точкеA,эта точка начнет излучать вторичную волну. Для прохождения волной расстоянияВС требуется время t=BC/v.За это же время фронт вторичной волны достигнет точек полусферы, радиус ADкоторой равен vt=BC.Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC,а направление распространения этой волны — лучомII.Из равенства треугольниковAВСиADСвытекает закон отражения: угол отражения i’1, равен углу падения i1.

Для вывода закона преломления предположим, что плоская волна (фронт волны — плоскость AВ),распространяющаяся в вакууме вдоль направленияI со скоростью светас, падает на границу раздела со средой, в которой скорость ее распространения равнаv (рис. 244). Пусть время прохождения волной путиВСравноt.Тогда BC=ct.За это же время фронт волны, возбужда­емый точкойAв среде со скоростьюv, достигнет точек полусферы, радиус которой AD=vt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC,а направление ее распространения — лучомIII. Из рис. 244 следует, что AC=BC/sini1=AD/sini2,т. е. ct/sini1=vt/sini2c, откуда

(170.2)

Сравнивая выражения (170.2) и (170.1), видим, что волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса, v<c,т. е. скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме.

Таким образом, к началу XVIII в. существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе эти теории объясняли прямолинейное распространение света, законы отражения и преломления. XVIII век стал веком борьбы этих теорий. Эксперименталь­ное доказательство справедливости волновой теории было получено в 1851 г., когда Э. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение, соответствующее формуле (170.2). К началу XIX столетия корпускулярная теория была полностью отвергнута и восторжествовала волновая теория. Большая заслуга в этом отношении принадлежит английскому физику Т. Юнгу, исследовавшему явления дифракции и интерференции, и французскому физи­ку О. Френелю (1788—1827), дополнившему принцип Гюйгенса и объяснившему эти явления.

Несмотря на признание волновой теории, она обладала целым рядом недостатков. Например, явления интерференции, дифракции и поляризации могли быть объяснены только в том случае, если световые волны считать поперечными. С другой стороны, если световые волны — поперечные, то их носитель — эфир — должен обладать свой­ствами твердых тел. Попытка же наделить эфир свойствами твердого тела успеха не имела, так как эфир не оказывает заметного воздействия на движущиеся в нем тела. Далее эксперименты показали, что скорость распространения света в разных средах различна, поэтому эфир должен обладать в разных средах различными свойствами. Теория Гюйгенса не могла объяснить также физической природы наличия разных цветов.

Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений, что позволило Максвеллу в 70-х годах прошлого столетия создать электромагнитную теорию света (см. § 139). Согласно электромагнитной теории Максвелла (см. (162.3)),

где с и v —соответственно скорости распространения света в вакууме и в среде с диэлектрической проницаемостьюи магнитной проницаемостью.Это соотноше­ние связывает оптические, электрические и магнитные постоянные вещества. По Макс­веллу, и величины, не зависящие от длины волны света, поэтому электромагнит­ная теория не могла объяснить явление дисперсии (зависимость показателя преломле­ния от длины волны). Эта трудность была преодолена в конце XIXв. Лоренцем, предложившимэлектронную теорию, согласно которой диэлектрическая проницае­мостьзависит от длины волны падающего света. Теория Лоренца ввела представле­ние об электронах, колеблющихся внутри атома, и позволила объяснить явления испускания и поглощения света веществом.

Несмотря на огромные успехи электромагнитной теории Максвелла и электронной теории Лоренца, они были несколько противоречивы и при их применении встречался ряд затруднений. Обе теории основывались на гипотезе об эфире, только «упругий эфир» был заменен «эфиром электромагнитным» (теория Максвелла) или «неподвижным эфиром» (теория Лоренца). Теория Максвелла не смогла объ­яснить процессов испускания и поглощения света, фотоэлектрического эффекта, комптоновского рассеяния и т. д. Теория Лоренца, в свою очередь, не смогла объяснить многие явления, связанные с взаимодействием света с веществом, в ча­стности вопрос о распределении энергии по длинам волн при тепловом излучении черного тела.

Перечисленные затруднения и противоречия были преодолены благодаря смелой гипотезе (1900) немецкого физика М. Планка (1858—1947), согласно которой излучение и поглощение света происходит не непрерывно, а дискретно, т. е. определенными порциями (квантами), энергия которых определяется частотой :

(170.3)

где h —постоянная Планка.

Теория Планка не нуждалась в понятии об эфире. Она объяснила тепловое излуче­ние черного тела. Эйнштейн в 1905 г. создал квантовую теорию света, согласно которой не толькоизлучениесвета, но и егораспространениепроисходит в видепотока световых квантов — фотонов, энергия которых определяется соотношением (170.3), а масса

(170.4)

Квантовые представления о свете хорошо согласуются с законами излучения и поглощения света, законами взаимодействия света с веществом. Однако как с помо­щью этих представлений объяснить такие хорошо изученные явления, как интерферен­ция, дифракция и поляризация света? Эти явления легко объясняются на основе волновых представлений. Все многообразие изученных свойств и законов распрост­ранения света, его взаимодействия с веществом показывает, что свет имеет сложную природу. Он представляет собой единство противоположных видов движения —корпускулярного (квантового)иволнового (электромагнитного). Длительный путь развития привел к современным представлениям одвойственной корпускулярно-волновой природе света. Выражения (170.3) и (170.4) связывают корпускулярные характеристики излуче­ния — массу и энергию кванта — с волновыми — частотой колебаний и длиной вол­ны. Таким образом, свет представляет собойединство дискретности и непрерыв­ности.