logo search
Материалы III семестра / Курс физики

§ 175. Применение интерференции света

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны 0.Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло–воздух, сопровождается отражением4% падающего потока (при показа­теле преломления стекла1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и све­тосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.

Для устранения указанных недостатков осуществляют так называемое просветле­ние оптики.Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух–пленка и пленка–стекло возникает интерференция когерентных лучей1' и2' (рис. 253). Толщину пленки dи показатели преломления стеклаnси пленкиnможно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна (см. (172.3)). Расчет показывает, что амплитуды от­раженных лучей равны, если

(175.1)

Так как nс,nи показатель преломления воздухаn0удовлетворяют условиямnс>n>n0, то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. i=0)

где nd оптическая толщина пленки.Обычно принимают m=0,тогда

Таким образом, если выполняется условие (175.1) и оптическая толщина плевки равна 0/4, то в результате интерференции наблюдается гашение отраженных лучей.Taккак добиться одновременного гашения для всех длин воли невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны00,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции.В отличие от двухлучевой интерференции, которую мы рас­сматривали до сих пор, многолучевая интерференция возникает при наложении боль­шого числа когерентных световых пучков. Распределение интенсивности в интерферен­ционной картине существенно различается; интерференционные максимумы значитель­но уже и ярче, чем при наложении двух когерентных световых пучков. Так, резуль­тирующая амплитуда световых колебаний одинаковой амплитуды в максимумах ин­тенсивности, где сложение происходит в одинаковой фазе, вNраз больше, а интенсив­ность в N2раз больше, чем от одного пучка (Nчисло интерферирующих пучков). Отметим, что для нахождения результирующей амплитуды удобно пользоваться гра­фическим методом, используя метод вращающегося вектора амплитуды (см. § 140). Многолучевая интерференция осуществляется в дифракционной решетке (см. § 180).

Многолучевую интерференцию можно осуществить в многослойной системе чере­дующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной 0/4), нанесенных на отражающую поверхность (рис. 254). Можно показать, что на границе раздела пленок (между двумя слоями ZnSс большим показателем преломленияп1находится пленка криолита с меньшим показателем преломленияn2) возникает большое число отраженных интерферирующих лучей, кото­рые при оптической толщине пленок0/4 будут взаимно усиливаться, т. е. коэффициент отражения возрастает. Характерной особенностью такой высокоотражательной систе­мы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система изсеми пленок для области 0,5 мкм дает коэффициент отражения96% (при коэффициенте пропускания3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференцион­ных светофильтров (узкополосных оптических фильтров).

Явление интерференции также применяется в очень точных измерительных прибо­рах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона. Монохроматический свет от источника Sпадает под углом 45° на плоскопараллельную пластинку P1.Сторона пластинки, удаленная отS,посеребренная и полупрозрачная, разделяет луч на две части: луч1(отражается от посеребренного слоя) в луч2(проходит через него). Луч1отражается от зеркала M1и, возвращаясь обратно, вновь проходит через пластинкуP1 (луч1').Луч2идет к зеркалу М2,отражается от него, возвращается обратно и отражается от пластинкиР1(луч2'). Так как первый из лучей проходит сквозь пластинкуР1дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинкаР2(точно такая же, как иР1,только не покрытая слоем серебра).

Лучи 1' и2' когерентны; следовательно, будет наблюдаться интерференция, резуль­тат которой зависит от оптической разности хода луча1от точкиОдо зеркалаМ1и луча2от точкиОдо зеркала M2.При перемещении одного из зеркал на расстояние0/4 разность хода обоих лучей увеличится на 0/2и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению ин­терференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10–7м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).

Российский физик В. П. Линник (1889—1984) использовал принцип действия ин­терферометра Майкельсона для создания микроинтерферометра(комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности.

Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. На пути ин­терферирующих лучей располагаются две одинаковые кюветы длинойl, одна из которых заполнена, например, газом с известным (n0), а другая — с неизвестным (nx) показателями преломления. Возникшая между интерферирующими лучами дополни­тельная оптическая разность хода=(nxn0)l.Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной

где m0показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величинуm0при известныхl,n0и, можно вычислятьnxили изменениеnxn0. Например, при смещении интерференционной картины на 1/5 полосы приl=10 см и =0,5мкмnxn0= 10–6, т.е. интерференцион­ные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1 000 000).

Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, об­текающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впер­вые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.

Задачи

22.1.Определить, какую длину путиs1пройдет фронт волны монохроматического света в ваку­уме за то же время, за которое он проходит путьs2=1,5мм в стекле с показателем преломленияn2=1,5. [2,25мм]

22.2.В опыте Юнга щели, расположенные на расстоянии 0,3 мм, освещались монохромати­ческим светом с длиной волны 0,6 мкм. Определить расстояние от щелей до экрана, если ширина интерференционных полос равна 1 мм. [0,5 м]

22.3.На стеклянный клин (n=1,5) нормально падает монохроматический свет (=698нм). Определить угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм. [0,4']

22.4.Установка для наблюдения колец Ньютона освещается монохроматическим светом, пада­ющим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в отраженном свете уменьшились в 1,21 раза. Определить показатель преломления жидкости. [1,46]

22.5.На линзу с показателем преломления 1,55 нормально падает монохроматический свет с длиной волны 0,55 мкм. Для устранения потерь отраженного света на линзу наносится тонкая пленка. Определить: 1) оптимальный показатель преломления пленки; 2) толщину пленки. [1) 1,24; 2) 0,111 мкм]

22.6.В опыте с интерферометром Майкельсона для смещения интерференционной картины на 450 полос зеркало пришлось переместить на расстояние 0,135 мм. Определить длину волны падающего света. [0,6 мкм]

22.7.На пути одного из лучей интерференционного рефрактометра поместили откачанную трубку длиной 10 см. При заполнении трубки хлором интерференционная картина смести­лась на 131 полосу. Определить показатель преломления хлора, если наблюдение произ­водится с монохроматическим светом с длиной волны 0,59 мкм. [1,000773]