3.7. Квазистационарное магнитное поле
Ток смещения принципиально отличается от тока проводимости – он не связан с движением зарядов. Он обусловлен только изменением во времени электрического поля (см.3.5). Даже в вакууме изменение электрического поля приводит к возникновению в окружающем пространстве магнитного поля. Именно по этому признаку ток смещения тождественен току проводимости и это дает возможность условно называть его «током».
Ток смещения jсмвозникает не только в вакууме или диэлектриках, но и в проводниках при прохождении по ним переменного тока проводимостиjпр. Однако он мал по сравнению сjпр(ввиду этого им пренебрегают).
В массивных проводниках, помещенных в переменное магнитное поле, могут в соответствии с законом (3.70) наводиться индукционные токи. Эти токи являются вихревыми в объеме проводников и известны как токи Фуко.
Токи Фуко создают собственное магнитное поле, которое в соответствии с правилом Ленца (см.3.73) препятствуют изменению вызвавшему их магнитного потока. Высокочастотные токи Фуко приводят к нагреванию проводников, что позволяет их применять для плавки металлов в индукционных печах, в микроволновых печах для нагревания проводящих токи продуктов, в физиотерапии (тело человека – проводник) и т.д. В других случаях для уменьшения потерь на тепло в электрических машинах и трансформаторах увеличивают сопротивление токам Фуко, делая их сердечники не сплошными, а из изолированных друг от друга тонких пластин.
В цепях с переменным электрическим током электросопротивление проводников возрастает с увеличением частоты тока. Это объясняется тем, что распределение плотности тока по сечению проводника становится неоднородным с учетом токов Фуко: плотность тока возрастает у поверхности (так называемый скин – эффект). Это же позволяет делать проводники пустотелами (трубчатыми). На скин – эффекте основаны методики высокочастотной закалки поверхности деталей.
Сила переменного тока оказывается в один и тот же момент времени неодинаковой в разных участках проводника. Это обусловлено конечной скоростью распространения вдоль проводника меняющегося электромагнитного поля. Однако, если учесть малую скорость движения носителей зарядов по сравнению со скоростью распространения поля, то токи можно считать квазистационарнымитакже как и возбуждаемые ими магнитные поля.
Переменные токи получают с помощью генераторов. При вращении контура в однородном магнитном поле с угловой скоростью через площадь, ограниченную контуром, периодически изменяется магнитный поток (см. 3.67).
,
где Ф0- максимальное значение потока через площадьSконтура.
Электродвижущая сила, возникающая при этом (см.3.70), будет изменяться по синусоидальному закону. ε0=ωФ0-амплитуда ЭДС. Если цепь замкнута, то в ней потечет переменный ток:
.
Вообще любой проводник помимо омического сопротивления Rобладает индуктивностьюLи емкостью С. Они оказывают току дополнительное сопротивление в виду появления ЭДС самоиндукции (см.3.73) и инертности перезарядки емкости. Тогда амплитудное значение силы переменного тока:
(3.90)
Величина имеет характер полного сопротивления (импеданс). Она зависит от значенийR,L,Cи частоты. При, удовлетворяющем условию:
,
полное сопротивление имеет минимальное значение равное R, а амплитуда силы переменного тока достигает максимального значения:
Частота - называется резонансной.RL=Lи- называют индуктивным и емкостным сопротивлениями в цепи переменного тока.
Переменный электрический токимеет большое практическое применение. Его можно передавать с малыми потерями на большие расстояния и с помощью трансформаторов в широких пределах изменять его силу и напряжение.
Чтобы характеризовать действиепеременного тока в сравнении его с постоянным вводится понятиедействующих значений силы тока и напряжения. Действующим значением силы тока называют величинуI, связанную с амплитудойI0следующим образом:
аналогично и напряжение . Именно они определяют мощность переменного тока. Можно также дать и другое определениеIД: действующее значение силы переменного тока равно такой силе постоянного тока, который выделяет в цепи то же количество теплоты, что и переменный ток.
- Мпс россии
- 1. Введение
- 2. Физические основы механики
- Основные механические модели
- 1. Материальная точка.
- 2. Абсолютно твердое тело.
- 2.1. Кинематика материальной точки
- Основные кинематические уравнения равнопеременного движения:
- Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения
- Для характеристики изменения вектора скорости на величину δv введем ускорение :
- Угловая скорость и угловое ускорение
- 2.2. Динамика материальной точки и поступательного движения твердого тела
- Взаимодействие тел. Второй закон Ньютона. Сила. Масса. Импульс. Центр масс
- 2.3. Законы сохранения в механике
- Момент силы. Момент импульса. Закон сохранения момента импульса
- Энергия. Работа. Мощность
- Консервативные и неконсервативные силы
- Закон сохранения энергии
- 2.4. Принцип относительности в механике
- 2.5. Элементы релятивистской динамики (специальной теории относительности)
- 2.6. Элементы механики твердого тела
- 2.7. Элементы механики сплошных сред
- Упругое тело. Деформация. Закон Гука
- 3. Электричество и магнетизм
- 3.1. Электростатика
- Закон Кулона
- Электрическое поле
- Принцип суперпозиции электрических полей
- Поток вектора напряженности электрического поля
- Теорема Остроградского – Гаусса и ее применение к расчету полей
- Поле равномерного заряженной бесконечной прямолинейной нити
- Поле равномерно заряженной плоскости
- Работа сил электростатического поля при перемещении заряда. Потенциал
- Связь между напряженностью и потенциалом электростатического поля
- Идеальный проводник в электростатическом поле
- Электроемкость уединенного проводника конденсатора
- Энергия заряженного проводника
- Энергия электрического поля. Объемная плотность энергии
- 3.2. Постоянный электрический ток
- Закон Ома
- Дифференциальная форма закона Ома
- Закон Джоуля-Ленца
- Закон Джоуля-Ленца в дифференциальной форме.
- Правила Кирхгофа для разветвленных цепей.
- 3.3. Магнитное поле
- Момент сил, действующих на виток с током в магнитном поле
- Принцип суперпозиции магнитных полей
- Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- Взаимодействие параллельных токов
- Контур с током в магнитном поле. Магнитный поток
- Работа перемещения проводника и контура с током в магнитном поле
- Явление электромагнитной индукции. Закон Фарадея
- Явление самоиндукции
- Токи замыкания и размыкания в цепи
- Явление взаимоиндукции
- Энергия магнитного поля
- 3.4. Статические поля в веществе Диэлектрики в электрическом поле
- Магнитные свойства вещества
- 3.5. Уравнения Максвелла
- Электромагнитные волны
- 3.6. Принцип относительности в электродинамике
- 3.7. Квазистационарное магнитное поле
- 4. Физика колебаний и волн
- 4.1. Кинематика гармонических колебаний
- Сложение гармонических колебаний
- 4.2. Гармонический осциллятор
- Свободные затихающие колебания
- Логарифмический декремент затухания
- 4.3. Ангармонические колебания
- 4.4. Волновые процессы
- 4.5. Интерференция волн
- Интерференция от двух когерентных источников
- Стоячие волны
- Интерференция в тонких пленках
- 4.6. Дифракция волн
- Принцип Гюйгенса-Френеля
- Дифракция Фраунгофера от одной щели
- Дифракция от многих щелей. Дифракционная решетка.
- 4.7. Поляризация света
- Поляризация при отражении света от диэлектрика
- Двойное лучепреломление в анизотропных кристаллах
- Закон Малюса
- Степень поляризации
- Вращение плоскости поляризации
- 4.8. Взаимодействие электромагнитных волн с веществом
- 5. Квантовая физика
- 5.1. Экспериментальное обоснование основных идей квантовой механики. Взаимодействие фотонов с электронами
- Внешний фотоэффект
- Эффект Комптона
- Давление света
- 5.2. Корпускулярно – волновой дуализм
- Соотношение неопределенностей
- 5.3. Квантовые состояния и уравнение Шредингера
- 5.4. Атом
- Теория Бора для водородоподобных атомов.
- 5.5 Многоэлектронные атомы
- 5.6. Молекулы
- 5.7. Электроны в кристаллах
- 5.8. Элементы квантовой электроники
- 5.9. Атомное ядро
- Радиоактивность. Закон радиоактивного распада
- Закономерности α и β - распада
- Ядерные реакции. Законы сохранения в ядерных реакциях
- Реакция деления ядра. Цепная реакция. Ядерный реактор
- Реакции синтеза. Термоядерные реакции
- Элементарные частицы
- 6. Статистическая физика и термодинамика
- 6.1. Элементы молекулярно-кинетической теории
- Модель идеального газа
- Число степеней свободы молекул
- Среднее число столкновений и средняя свободного пробега молекул
- Явления переноса
- Электрический ток в вакууме. Термоэлектронная эмиссия
- Электрический ток в газах
- 6.2. Основы термодинамики Внутренняя энергия идеального газа. Работа
- Внутренняя энергия идеального газа
- Первый закон термодинамики
- Изопроцессы
- Термодинамические процессы, циклы
- Круговые процессы. Второе начало термодинамики.
- Цикл Карно
- Фазовые превращения
- Реальные газы. Уравнение Ван – дер – Ваальса
- 6.3. Функции распределения. Закон Максвелла для распределения молекул по скоростям
- Барометрическая формула (распределение Больцмана)
- Порядок и беспорядок в природе. Синергетика
- Магнетики в тепловом равновесии. Ферромагнетизм
- 7. Заключение Современная физическая картина мира