Упругое тело. Деформация. Закон Гука
Упругие свойства тел проявляются при деформации и обусловлены взаимодействием атомов.
Деформацией называется изменение формы или размеров тела при действии на него других тел. Деформации подразделяются на упругие и пластические.
Упругая деформация такая, которая исчезает при снятии действующей силы.
Упругое тело – тело, которое восстанавливает свои первоначальные форму и размеры после снятия деформирующей силы.
Упругие деформации подчиняются закону Гука для продольного растяжения (сжатия): сила упругости F упруго деформированного тела прямо пропорциональна его абсолютной деформации х:
. (2.53)
k-коэффициент жесткости тела, который зависит от его геометрических размеров и материала, из которого оно изготовлено:
.
Минус в (2.53) показывает, что сила упругости направлена в сторону, противоположную деформации х. Она обусловлена межатомным взаимодействием.
Закон Гука выполняется для большинства тел при небольших деформациях.
Величина относительной деформации будет тем больше, чем меньше сечение проволоки (прутка), т.е., гдеα-коэффициент упругости.
Величину F/S=σ называютнормальным напряжением. Тогда ε=ασ, т.е. относительная деформация прямо пропорциональна нормальному приложенному напряжению σ.
Вместо α можно взять обратную величину: 1/α=Е-модуль упругости, или модуль Юнга. Модуль Юнга теоритически равен такому напряжению σ, при котором ε=1. Тогда σ =εE.
Потенциальная энергия упругой деформацииможет быть вычислена:
или, (2.54)
где V-объем тела.
Зависимость ε от σ при растяжении металлического стержня показана на (рис.2.14).
Рис. 2.14
Область 0-1-область пропорциональности (выполняется закон Гука). Точка 2 соответствует пределу упругости. Участок 2-3-область пластической деформации. Точка 4, соответствующая максимальному напряжению, обозначает предел прочности.
Сила трения возникает между телами, соприкасающимися друг с другом и находящимися в покое (например, на наклонной плоскости-сила трения покоя), или движущимися относительно друг друга (сила трения скольжения). Сила трения направлена вдоль поверхности соприкосновения тел против направления движения (действующей внешней силы).
Сила трения скольжения прямо пропорциональна силе нормального давления или силы реакции опоры N(на горизонтальной поверхности она равна весу телаN=mg)
FТр = μN, (2.55)
где μ-коэффициент трения.
Коэффициент трения зависит от природы и состояния поверхности скольжения и не зависит от площади соприкасающихся поверхностей.
- Мпс россии
- 1. Введение
- 2. Физические основы механики
- Основные механические модели
- 1. Материальная точка.
- 2. Абсолютно твердое тело.
- 2.1. Кинематика материальной точки
- Основные кинематические уравнения равнопеременного движения:
- Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения
- Для характеристики изменения вектора скорости на величину δv введем ускорение :
- Угловая скорость и угловое ускорение
- 2.2. Динамика материальной точки и поступательного движения твердого тела
- Взаимодействие тел. Второй закон Ньютона. Сила. Масса. Импульс. Центр масс
- 2.3. Законы сохранения в механике
- Момент силы. Момент импульса. Закон сохранения момента импульса
- Энергия. Работа. Мощность
- Консервативные и неконсервативные силы
- Закон сохранения энергии
- 2.4. Принцип относительности в механике
- 2.5. Элементы релятивистской динамики (специальной теории относительности)
- 2.6. Элементы механики твердого тела
- 2.7. Элементы механики сплошных сред
- Упругое тело. Деформация. Закон Гука
- 3. Электричество и магнетизм
- 3.1. Электростатика
- Закон Кулона
- Электрическое поле
- Принцип суперпозиции электрических полей
- Поток вектора напряженности электрического поля
- Теорема Остроградского – Гаусса и ее применение к расчету полей
- Поле равномерного заряженной бесконечной прямолинейной нити
- Поле равномерно заряженной плоскости
- Работа сил электростатического поля при перемещении заряда. Потенциал
- Связь между напряженностью и потенциалом электростатического поля
- Идеальный проводник в электростатическом поле
- Электроемкость уединенного проводника конденсатора
- Энергия заряженного проводника
- Энергия электрического поля. Объемная плотность энергии
- 3.2. Постоянный электрический ток
- Закон Ома
- Дифференциальная форма закона Ома
- Закон Джоуля-Ленца
- Закон Джоуля-Ленца в дифференциальной форме.
- Правила Кирхгофа для разветвленных цепей.
- 3.3. Магнитное поле
- Момент сил, действующих на виток с током в магнитном поле
- Принцип суперпозиции магнитных полей
- Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- Взаимодействие параллельных токов
- Контур с током в магнитном поле. Магнитный поток
- Работа перемещения проводника и контура с током в магнитном поле
- Явление электромагнитной индукции. Закон Фарадея
- Явление самоиндукции
- Токи замыкания и размыкания в цепи
- Явление взаимоиндукции
- Энергия магнитного поля
- 3.4. Статические поля в веществе Диэлектрики в электрическом поле
- Магнитные свойства вещества
- 3.5. Уравнения Максвелла
- Электромагнитные волны
- 3.6. Принцип относительности в электродинамике
- 3.7. Квазистационарное магнитное поле
- 4. Физика колебаний и волн
- 4.1. Кинематика гармонических колебаний
- Сложение гармонических колебаний
- 4.2. Гармонический осциллятор
- Свободные затихающие колебания
- Логарифмический декремент затухания
- 4.3. Ангармонические колебания
- 4.4. Волновые процессы
- 4.5. Интерференция волн
- Интерференция от двух когерентных источников
- Стоячие волны
- Интерференция в тонких пленках
- 4.6. Дифракция волн
- Принцип Гюйгенса-Френеля
- Дифракция Фраунгофера от одной щели
- Дифракция от многих щелей. Дифракционная решетка.
- 4.7. Поляризация света
- Поляризация при отражении света от диэлектрика
- Двойное лучепреломление в анизотропных кристаллах
- Закон Малюса
- Степень поляризации
- Вращение плоскости поляризации
- 4.8. Взаимодействие электромагнитных волн с веществом
- 5. Квантовая физика
- 5.1. Экспериментальное обоснование основных идей квантовой механики. Взаимодействие фотонов с электронами
- Внешний фотоэффект
- Эффект Комптона
- Давление света
- 5.2. Корпускулярно – волновой дуализм
- Соотношение неопределенностей
- 5.3. Квантовые состояния и уравнение Шредингера
- 5.4. Атом
- Теория Бора для водородоподобных атомов.
- 5.5 Многоэлектронные атомы
- 5.6. Молекулы
- 5.7. Электроны в кристаллах
- 5.8. Элементы квантовой электроники
- 5.9. Атомное ядро
- Радиоактивность. Закон радиоактивного распада
- Закономерности α и β - распада
- Ядерные реакции. Законы сохранения в ядерных реакциях
- Реакция деления ядра. Цепная реакция. Ядерный реактор
- Реакции синтеза. Термоядерные реакции
- Элементарные частицы
- 6. Статистическая физика и термодинамика
- 6.1. Элементы молекулярно-кинетической теории
- Модель идеального газа
- Число степеней свободы молекул
- Среднее число столкновений и средняя свободного пробега молекул
- Явления переноса
- Электрический ток в вакууме. Термоэлектронная эмиссия
- Электрический ток в газах
- 6.2. Основы термодинамики Внутренняя энергия идеального газа. Работа
- Внутренняя энергия идеального газа
- Первый закон термодинамики
- Изопроцессы
- Термодинамические процессы, циклы
- Круговые процессы. Второе начало термодинамики.
- Цикл Карно
- Фазовые превращения
- Реальные газы. Уравнение Ван – дер – Ваальса
- 6.3. Функции распределения. Закон Максвелла для распределения молекул по скоростям
- Барометрическая формула (распределение Больцмана)
- Порядок и беспорядок в природе. Синергетика
- Магнетики в тепловом равновесии. Ферромагнетизм
- 7. Заключение Современная физическая картина мира