Консервативные и неконсервативные силы
Если на тело в каждой точке пространства действует сила, то эту область называют силовым полем.
Силы, работа которых не зависит от формы траектории, называют консервативными. К таким силам относят силы тяготения, силы упругости, силы Кулона и др.
Пусть тело под действием силы тяжести изменило свое положение по высотеh, перемещаясь вдоль криволинейной траектории (рис.2.5)
Рис.2.5
Выделим произвольный участок АВ траектории столь малый, чтобы можно было пренебречь его кривизной. Тогда согласно (2.19) работа на этом участке
. Из рис.. Тогда
ΔА=mgΔh
Аналогичным образом, вычислив работу на всех Nучастках траектории, работу по перемещению тела под действием силы тяжестииз точки 1 в точку 2 можно представить как сумму элементарных работ ΔАiна всех участках перемещений:
(2.23)
Работа силы тяжести не зависит от формы траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот исходного и конечного положения тела.
Работа силы тяжести вдоль любой замкнутой траектории, когда тело возвращается в исходную точку так, что высота его не изменяется, равна нулю.
Таким образом, есть еще одна величина mgh, изменение которой также равно работе. В отличие от (2.22.) эта величина характеризует изменение взаимного положения тел и называетсяпотенциальной энергией.
Поле, в котором работа сил не зависит от траектории движения тел, называется потенциальным.
Если в силовом поле работа сил зависит от формы траектории движения тела, то поле не будет потенциальным, а силы в этом поле называются неконсервативными(силы трения, силы в магнитном поле и др.).
В более широком понимании потенциальной энергией называется такая составляющая энергии механической системы, которая зависит лишь от конфигурации системы, т.е. от взаимного расположения всех ее частиц(материальных точек)в потенциальном поле(другие примеры будут рассмотрены ниже, (см.п.2.7, 3.1).
В общем dA=Fdr=-dWnоткудаилиF=grad Wn
Если в замкнутой системе действуют диссипативные силы(например, силы трения, сопротивления движению тел в жидкостях и газах и т.п.), то их действие приводит к уменьшению механической энергии системы. Такой процесс называетсядиссипацией энергии.
Внутренняя энергиясистемы или тела включает в себя энергию всех видов движений и взаимодействий внутри системы (см. например, раздел 6).
- Мпс россии
- 1. Введение
- 2. Физические основы механики
- Основные механические модели
- 1. Материальная точка.
- 2. Абсолютно твердое тело.
- 2.1. Кинематика материальной точки
- Основные кинематические уравнения равнопеременного движения:
- Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения
- Для характеристики изменения вектора скорости на величину δv введем ускорение :
- Угловая скорость и угловое ускорение
- 2.2. Динамика материальной точки и поступательного движения твердого тела
- Взаимодействие тел. Второй закон Ньютона. Сила. Масса. Импульс. Центр масс
- 2.3. Законы сохранения в механике
- Момент силы. Момент импульса. Закон сохранения момента импульса
- Энергия. Работа. Мощность
- Консервативные и неконсервативные силы
- Закон сохранения энергии
- 2.4. Принцип относительности в механике
- 2.5. Элементы релятивистской динамики (специальной теории относительности)
- 2.6. Элементы механики твердого тела
- 2.7. Элементы механики сплошных сред
- Упругое тело. Деформация. Закон Гука
- 3. Электричество и магнетизм
- 3.1. Электростатика
- Закон Кулона
- Электрическое поле
- Принцип суперпозиции электрических полей
- Поток вектора напряженности электрического поля
- Теорема Остроградского – Гаусса и ее применение к расчету полей
- Поле равномерного заряженной бесконечной прямолинейной нити
- Поле равномерно заряженной плоскости
- Работа сил электростатического поля при перемещении заряда. Потенциал
- Связь между напряженностью и потенциалом электростатического поля
- Идеальный проводник в электростатическом поле
- Электроемкость уединенного проводника конденсатора
- Энергия заряженного проводника
- Энергия электрического поля. Объемная плотность энергии
- 3.2. Постоянный электрический ток
- Закон Ома
- Дифференциальная форма закона Ома
- Закон Джоуля-Ленца
- Закон Джоуля-Ленца в дифференциальной форме.
- Правила Кирхгофа для разветвленных цепей.
- 3.3. Магнитное поле
- Момент сил, действующих на виток с током в магнитном поле
- Принцип суперпозиции магнитных полей
- Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- Взаимодействие параллельных токов
- Контур с током в магнитном поле. Магнитный поток
- Работа перемещения проводника и контура с током в магнитном поле
- Явление электромагнитной индукции. Закон Фарадея
- Явление самоиндукции
- Токи замыкания и размыкания в цепи
- Явление взаимоиндукции
- Энергия магнитного поля
- 3.4. Статические поля в веществе Диэлектрики в электрическом поле
- Магнитные свойства вещества
- 3.5. Уравнения Максвелла
- Электромагнитные волны
- 3.6. Принцип относительности в электродинамике
- 3.7. Квазистационарное магнитное поле
- 4. Физика колебаний и волн
- 4.1. Кинематика гармонических колебаний
- Сложение гармонических колебаний
- 4.2. Гармонический осциллятор
- Свободные затихающие колебания
- Логарифмический декремент затухания
- 4.3. Ангармонические колебания
- 4.4. Волновые процессы
- 4.5. Интерференция волн
- Интерференция от двух когерентных источников
- Стоячие волны
- Интерференция в тонких пленках
- 4.6. Дифракция волн
- Принцип Гюйгенса-Френеля
- Дифракция Фраунгофера от одной щели
- Дифракция от многих щелей. Дифракционная решетка.
- 4.7. Поляризация света
- Поляризация при отражении света от диэлектрика
- Двойное лучепреломление в анизотропных кристаллах
- Закон Малюса
- Степень поляризации
- Вращение плоскости поляризации
- 4.8. Взаимодействие электромагнитных волн с веществом
- 5. Квантовая физика
- 5.1. Экспериментальное обоснование основных идей квантовой механики. Взаимодействие фотонов с электронами
- Внешний фотоэффект
- Эффект Комптона
- Давление света
- 5.2. Корпускулярно – волновой дуализм
- Соотношение неопределенностей
- 5.3. Квантовые состояния и уравнение Шредингера
- 5.4. Атом
- Теория Бора для водородоподобных атомов.
- 5.5 Многоэлектронные атомы
- 5.6. Молекулы
- 5.7. Электроны в кристаллах
- 5.8. Элементы квантовой электроники
- 5.9. Атомное ядро
- Радиоактивность. Закон радиоактивного распада
- Закономерности α и β - распада
- Ядерные реакции. Законы сохранения в ядерных реакциях
- Реакция деления ядра. Цепная реакция. Ядерный реактор
- Реакции синтеза. Термоядерные реакции
- Элементарные частицы
- 6. Статистическая физика и термодинамика
- 6.1. Элементы молекулярно-кинетической теории
- Модель идеального газа
- Число степеней свободы молекул
- Среднее число столкновений и средняя свободного пробега молекул
- Явления переноса
- Электрический ток в вакууме. Термоэлектронная эмиссия
- Электрический ток в газах
- 6.2. Основы термодинамики Внутренняя энергия идеального газа. Работа
- Внутренняя энергия идеального газа
- Первый закон термодинамики
- Изопроцессы
- Термодинамические процессы, циклы
- Круговые процессы. Второе начало термодинамики.
- Цикл Карно
- Фазовые превращения
- Реальные газы. Уравнение Ван – дер – Ваальса
- 6.3. Функции распределения. Закон Максвелла для распределения молекул по скоростям
- Барометрическая формула (распределение Больцмана)
- Порядок и беспорядок в природе. Синергетика
- Магнетики в тепловом равновесии. Ферромагнетизм
- 7. Заключение Современная физическая картина мира