Принцип Гюйгенса-Френеля
Френель ввел представление об интерференции вторичных волн. Это позволило определять амплитуду волны в любой точке пространства, разрешить такой противоречивый вопрос как прямолинейность света и огибанием им препятствий. Если источник света находится далеко от наблюдателя, т.е. лучи можно считать параллельными, то говорят о дифракции Фраунгофера. Дифракция в расходящихся лучах, так что волновой фронт имеет форму сферы (например, от близкого точечного источника) называется дифракцией Френеля.
Пользуясь принципом Гюйгенса-Френеля, найдем амплитуду колебаний в точке Р, возбуждаемых сферической монохроматической волной, распространяющейся в однородной среде от источника S(рис.4.12).
Рис.4.12
Будем считать, что сферическая волна симметрична относительно направления ее распространения S-P. Разобьем волновую поверхность на ряд кольцевых зон, причем расстояние от каждого соседнего кольца до точки наблюдения Р будет отличаться на λ/2. При этом колебания от соседних зон будут приходить в точку Р в противоположных фазах и будут ослаблять друг друга. Так как расстояние от зон до точки Р по мере увеличения их номера и удаления от центра сферы О растет, то амплитуда колебаний, доходящих от них в точку Р, монотонно убывает, т.е. А1>А2>А3…>Аn-1>Аn>Аn+1.
Т.к. фазы колебаний от соседних зон противоположны, то результирующая амплитуда колебаний в точке Р:
Ар=А1-А2+А3-А4+…
или
Суммы в скобках можно считать равными нулю.
Тогда(4.29) т.е. действие всей волновой поверхности (рис.4.12) эквивалентно половине действия первой (центральной) зоны. Центральная зона очень узкая, поэтому можно считать, что свет от нее распространяетсяпрямолинейно. Если на пути волны поставить преграду с отверстием, пропускающим свет только от центральной зоны, то амплитуда Арв точке Р возрастет в 2 раза, а интенсивностьI=А2увеличится в 4 раза. По мере увеличения диаметра отверстия интенсивностьIсвета в точке Р будет периодически меняться:если отверстие открывает нечетное число зон - наблюдается максимум, если четное - минимум.Пластинка,выборочно пропускающая свет от зон Френеля, получила название зонной.
Подобным образом можно объяснить наблюдение максимумов (или минимумов) за круглым непрозрачным препятствием. Если на пути S-Pмы перекроем, например, две зоны, то в точке Р амплитуда будет:
Ар=А3-А4+А5-А6+……
По мере увеличения размеров препятствия увеличивается число перекрытых зон и интенсивность в точке Р уменьшается, стремясь к нулю. Можно объяснить, что свет способен огибать лишь малые препятствия.
- Мпс россии
- 1. Введение
- 2. Физические основы механики
- Основные механические модели
- 1. Материальная точка.
- 2. Абсолютно твердое тело.
- 2.1. Кинематика материальной точки
- Основные кинематические уравнения равнопеременного движения:
- Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения
- Для характеристики изменения вектора скорости на величину δv введем ускорение :
- Угловая скорость и угловое ускорение
- 2.2. Динамика материальной точки и поступательного движения твердого тела
- Взаимодействие тел. Второй закон Ньютона. Сила. Масса. Импульс. Центр масс
- 2.3. Законы сохранения в механике
- Момент силы. Момент импульса. Закон сохранения момента импульса
- Энергия. Работа. Мощность
- Консервативные и неконсервативные силы
- Закон сохранения энергии
- 2.4. Принцип относительности в механике
- 2.5. Элементы релятивистской динамики (специальной теории относительности)
- 2.6. Элементы механики твердого тела
- 2.7. Элементы механики сплошных сред
- Упругое тело. Деформация. Закон Гука
- 3. Электричество и магнетизм
- 3.1. Электростатика
- Закон Кулона
- Электрическое поле
- Принцип суперпозиции электрических полей
- Поток вектора напряженности электрического поля
- Теорема Остроградского – Гаусса и ее применение к расчету полей
- Поле равномерного заряженной бесконечной прямолинейной нити
- Поле равномерно заряженной плоскости
- Работа сил электростатического поля при перемещении заряда. Потенциал
- Связь между напряженностью и потенциалом электростатического поля
- Идеальный проводник в электростатическом поле
- Электроемкость уединенного проводника конденсатора
- Энергия заряженного проводника
- Энергия электрического поля. Объемная плотность энергии
- 3.2. Постоянный электрический ток
- Закон Ома
- Дифференциальная форма закона Ома
- Закон Джоуля-Ленца
- Закон Джоуля-Ленца в дифференциальной форме.
- Правила Кирхгофа для разветвленных цепей.
- 3.3. Магнитное поле
- Момент сил, действующих на виток с током в магнитном поле
- Принцип суперпозиции магнитных полей
- Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- Взаимодействие параллельных токов
- Контур с током в магнитном поле. Магнитный поток
- Работа перемещения проводника и контура с током в магнитном поле
- Явление электромагнитной индукции. Закон Фарадея
- Явление самоиндукции
- Токи замыкания и размыкания в цепи
- Явление взаимоиндукции
- Энергия магнитного поля
- 3.4. Статические поля в веществе Диэлектрики в электрическом поле
- Магнитные свойства вещества
- 3.5. Уравнения Максвелла
- Электромагнитные волны
- 3.6. Принцип относительности в электродинамике
- 3.7. Квазистационарное магнитное поле
- 4. Физика колебаний и волн
- 4.1. Кинематика гармонических колебаний
- Сложение гармонических колебаний
- 4.2. Гармонический осциллятор
- Свободные затихающие колебания
- Логарифмический декремент затухания
- 4.3. Ангармонические колебания
- 4.4. Волновые процессы
- 4.5. Интерференция волн
- Интерференция от двух когерентных источников
- Стоячие волны
- Интерференция в тонких пленках
- 4.6. Дифракция волн
- Принцип Гюйгенса-Френеля
- Дифракция Фраунгофера от одной щели
- Дифракция от многих щелей. Дифракционная решетка.
- 4.7. Поляризация света
- Поляризация при отражении света от диэлектрика
- Двойное лучепреломление в анизотропных кристаллах
- Закон Малюса
- Степень поляризации
- Вращение плоскости поляризации
- 4.8. Взаимодействие электромагнитных волн с веществом
- 5. Квантовая физика
- 5.1. Экспериментальное обоснование основных идей квантовой механики. Взаимодействие фотонов с электронами
- Внешний фотоэффект
- Эффект Комптона
- Давление света
- 5.2. Корпускулярно – волновой дуализм
- Соотношение неопределенностей
- 5.3. Квантовые состояния и уравнение Шредингера
- 5.4. Атом
- Теория Бора для водородоподобных атомов.
- 5.5 Многоэлектронные атомы
- 5.6. Молекулы
- 5.7. Электроны в кристаллах
- 5.8. Элементы квантовой электроники
- 5.9. Атомное ядро
- Радиоактивность. Закон радиоактивного распада
- Закономерности α и β - распада
- Ядерные реакции. Законы сохранения в ядерных реакциях
- Реакция деления ядра. Цепная реакция. Ядерный реактор
- Реакции синтеза. Термоядерные реакции
- Элементарные частицы
- 6. Статистическая физика и термодинамика
- 6.1. Элементы молекулярно-кинетической теории
- Модель идеального газа
- Число степеней свободы молекул
- Среднее число столкновений и средняя свободного пробега молекул
- Явления переноса
- Электрический ток в вакууме. Термоэлектронная эмиссия
- Электрический ток в газах
- 6.2. Основы термодинамики Внутренняя энергия идеального газа. Работа
- Внутренняя энергия идеального газа
- Первый закон термодинамики
- Изопроцессы
- Термодинамические процессы, циклы
- Круговые процессы. Второе начало термодинамики.
- Цикл Карно
- Фазовые превращения
- Реальные газы. Уравнение Ван – дер – Ваальса
- 6.3. Функции распределения. Закон Максвелла для распределения молекул по скоростям
- Барометрическая формула (распределение Больцмана)
- Порядок и беспорядок в природе. Синергетика
- Магнетики в тепловом равновесии. Ферромагнетизм
- 7. Заключение Современная физическая картина мира