Элементарные частицы
Древние представляли мир, состоящим из неделимых атомов. В начале ХХ века удалось изучить структуру атома, разложить его на элементарные частицы: протоны, нейтроны и электроны. Казалось этого достаточно для описания структуры вещества. Но на этом дело не закончилось. В середине прошлого были открыты мезоны, нейтрино. У каждой частицы в силу закона симметрии обнаружилась и античастица. Затем перед глазами ученых оказалась целая «россыпь» частиц: их обнаруживали в лучах, приходящих из космоса, получали с помощью мощных ускорителей. Сейчас открыто уже более 400 частиц. Одни из частиц стабильны, вроде протонов, другие живут мгновения (10-23с – резонансы). Одни живут только в движении (фотон, нейтрино), другие могут находиться в состоянии покоя. Жизнь этих частиц - непрерывное взаимодействие друг с другом, взаимные превращения. Взаимодействие частиц называют слабым по сравнению с другими фундаментальными взаимодействиями. Об этом можно судить по малому времени их жизни. Значит силы, за счет которых происходят распады, малы. Примером слабых взаимодействий служит β - распад μ - мезонов (мюонов) и π - мезонов (пионов):
где - электронное нейтрино (антинейтрино),- мюонное нейтрино (антинейтрино).
Сейчас множество частиц удалось свести к двум небольшим семействам: лептонам, участвующим в слабом взаимодействии (ответственном за радиоактивный распад), икваркам, которые образуют протоны, нейтроны и другие сильно взаимодействующие частицы.
Лептоновсейчас известно шесть: электрон, мюон и таон и три соответствующие им нейтрино:. Мюон очень похож по своим свойствам на электрон, но масса покоя у него почти в 200 раз больше. Таон имеет массу еще большую. Электрон стабилен в отношении распада на другие частицы. Мюон испытывает бета распад, время его жизни10-6с. У таона10-13с.
Кварки – это необычные частицы, из которых построены протоны, нейтроны, гипероны и др. частицы. Примерно 20 лет назад стало ясно, что нуклоны имеют сложную структуру. Кварки имеют электрические заряды, кратные е/3. Согласно кварк-лептонной симметрии природы их как и лептонов должно быть шесть (к настоящему времени все открыты): верхний, нижний, очарованный, странный, истинный, прелестный – такие у них названия. Протон и нейтрон состоят из 3-х кварков.
Для чего ученые пытаются понять элементарную структуру материи? Для того, чтобы выяснить фундаментальные законы природы, наиболее общие законы, из которых как частные случаи вытекали бы сегодня изучаемые нами законы. Природа едина и законы должны быть едиными – это понимали еще во времена Эйнштейна. Сейчас, например, уже можно указать на единый обменный характер электромагнитных и слабых взаимодействий (электрослабое взаимодействие).
Итак, к настоящему времени составными элементами материи считаются 6 кварков и столько же лептонов. Разные взаимодействия между этими фундаментальными частицами возникают за счет обмена переносчиками (квантами) взаимодействия: фотонами, глюонами, бозонами и гравитонами.
- Мпс россии
- 1. Введение
- 2. Физические основы механики
- Основные механические модели
- 1. Материальная точка.
- 2. Абсолютно твердое тело.
- 2.1. Кинематика материальной точки
- Основные кинематические уравнения равнопеременного движения:
- Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения
- Для характеристики изменения вектора скорости на величину δv введем ускорение :
- Угловая скорость и угловое ускорение
- 2.2. Динамика материальной точки и поступательного движения твердого тела
- Взаимодействие тел. Второй закон Ньютона. Сила. Масса. Импульс. Центр масс
- 2.3. Законы сохранения в механике
- Момент силы. Момент импульса. Закон сохранения момента импульса
- Энергия. Работа. Мощность
- Консервативные и неконсервативные силы
- Закон сохранения энергии
- 2.4. Принцип относительности в механике
- 2.5. Элементы релятивистской динамики (специальной теории относительности)
- 2.6. Элементы механики твердого тела
- 2.7. Элементы механики сплошных сред
- Упругое тело. Деформация. Закон Гука
- 3. Электричество и магнетизм
- 3.1. Электростатика
- Закон Кулона
- Электрическое поле
- Принцип суперпозиции электрических полей
- Поток вектора напряженности электрического поля
- Теорема Остроградского – Гаусса и ее применение к расчету полей
- Поле равномерного заряженной бесконечной прямолинейной нити
- Поле равномерно заряженной плоскости
- Работа сил электростатического поля при перемещении заряда. Потенциал
- Связь между напряженностью и потенциалом электростатического поля
- Идеальный проводник в электростатическом поле
- Электроемкость уединенного проводника конденсатора
- Энергия заряженного проводника
- Энергия электрического поля. Объемная плотность энергии
- 3.2. Постоянный электрический ток
- Закон Ома
- Дифференциальная форма закона Ома
- Закон Джоуля-Ленца
- Закон Джоуля-Ленца в дифференциальной форме.
- Правила Кирхгофа для разветвленных цепей.
- 3.3. Магнитное поле
- Момент сил, действующих на виток с током в магнитном поле
- Принцип суперпозиции магнитных полей
- Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- Взаимодействие параллельных токов
- Контур с током в магнитном поле. Магнитный поток
- Работа перемещения проводника и контура с током в магнитном поле
- Явление электромагнитной индукции. Закон Фарадея
- Явление самоиндукции
- Токи замыкания и размыкания в цепи
- Явление взаимоиндукции
- Энергия магнитного поля
- 3.4. Статические поля в веществе Диэлектрики в электрическом поле
- Магнитные свойства вещества
- 3.5. Уравнения Максвелла
- Электромагнитные волны
- 3.6. Принцип относительности в электродинамике
- 3.7. Квазистационарное магнитное поле
- 4. Физика колебаний и волн
- 4.1. Кинематика гармонических колебаний
- Сложение гармонических колебаний
- 4.2. Гармонический осциллятор
- Свободные затихающие колебания
- Логарифмический декремент затухания
- 4.3. Ангармонические колебания
- 4.4. Волновые процессы
- 4.5. Интерференция волн
- Интерференция от двух когерентных источников
- Стоячие волны
- Интерференция в тонких пленках
- 4.6. Дифракция волн
- Принцип Гюйгенса-Френеля
- Дифракция Фраунгофера от одной щели
- Дифракция от многих щелей. Дифракционная решетка.
- 4.7. Поляризация света
- Поляризация при отражении света от диэлектрика
- Двойное лучепреломление в анизотропных кристаллах
- Закон Малюса
- Степень поляризации
- Вращение плоскости поляризации
- 4.8. Взаимодействие электромагнитных волн с веществом
- 5. Квантовая физика
- 5.1. Экспериментальное обоснование основных идей квантовой механики. Взаимодействие фотонов с электронами
- Внешний фотоэффект
- Эффект Комптона
- Давление света
- 5.2. Корпускулярно – волновой дуализм
- Соотношение неопределенностей
- 5.3. Квантовые состояния и уравнение Шредингера
- 5.4. Атом
- Теория Бора для водородоподобных атомов.
- 5.5 Многоэлектронные атомы
- 5.6. Молекулы
- 5.7. Электроны в кристаллах
- 5.8. Элементы квантовой электроники
- 5.9. Атомное ядро
- Радиоактивность. Закон радиоактивного распада
- Закономерности α и β - распада
- Ядерные реакции. Законы сохранения в ядерных реакциях
- Реакция деления ядра. Цепная реакция. Ядерный реактор
- Реакции синтеза. Термоядерные реакции
- Элементарные частицы
- 6. Статистическая физика и термодинамика
- 6.1. Элементы молекулярно-кинетической теории
- Модель идеального газа
- Число степеней свободы молекул
- Среднее число столкновений и средняя свободного пробега молекул
- Явления переноса
- Электрический ток в вакууме. Термоэлектронная эмиссия
- Электрический ток в газах
- 6.2. Основы термодинамики Внутренняя энергия идеального газа. Работа
- Внутренняя энергия идеального газа
- Первый закон термодинамики
- Изопроцессы
- Термодинамические процессы, циклы
- Круговые процессы. Второе начало термодинамики.
- Цикл Карно
- Фазовые превращения
- Реальные газы. Уравнение Ван – дер – Ваальса
- 6.3. Функции распределения. Закон Максвелла для распределения молекул по скоростям
- Барометрическая формула (распределение Больцмана)
- Порядок и беспорядок в природе. Синергетика
- Магнетики в тепловом равновесии. Ферромагнетизм
- 7. Заключение Современная физическая картина мира