Энергия. Работа. Мощность
Энергия есть физическая величина, характеризующая способность тела или системы тел совершать работу. Энергия в механике может быть обусловлена причинами двоякого рода: во-первых, движением тела с некоторой скоростью (кинетическая энергия) и, во-вторых, нахождением тела в потенциальном поле сил (потенциальная энергия).
Для количественной оценки изменения энергии тела вводят понятие работы как меры изменения энергии.
В общем случае элементарная работа δА силы на элементарном перемещенииdrматериальной точки есть скалярное произведение:
, (2.19)
где α - угол между и элементарным перемещением.
Произведение F·cosα=Frесть проекцияна направление, а работа δА на графике в координатахF-r(рис.2.4) численно равна заштрихованной площади шириноюdr.
Рис.2.4
Работа силы на конечном перемещениимежду точками 1 и 2:
, (2.20)
На рис.2.4. эта работа А12численно равна площади криволинейной трапецииr112r2.
Если сила при перемещении не меняется (F=const), то
,
и на графике F-rбудет численно равна площади прямоугольника. Работа положительна (А>0), еслисовпадает по направлению сили образует с ним острый угол α.
В системе СИ работа измеряется в Джоулях (Дж):
1 Дж = 1 Н · м
Мощность.
Мощность NсилыFравна отношению элементарной работы δА ко времениdt, за которое она совершена, т.е.
, (2.21)
где - скорость движения.
Таким образом, мощность силы можно определить как скалярное произведение векторов и.
В системе СИ мощность измеряется в Вт.
.
Кинетическая энергия.
Результатом действия силы может быть изменение скорости движения тела и его кинетической энергииWк. Изменение кинетической энергии материальной точки равно работе, совершаемой силой на элементарном участкеdr:
,
Поскольку , получимdWk=mVdV.
В ньютоновской динамике масса mне зависит от скорости и тогда, интегрируя и полагаяWкo=0 приVo=0, получим выражение для кинетической энергии материальной точки:
(2.22)
Величина является функцией состояния системы. Она характеризует энергию, запасенную движущимся телом.
Если на тело действует сила (или несколько сил, равнодействующая которых не равна нулю), то работаэтой силы (или равнодействующей)равна изменению кинетической энергии тела. Это есть теорема о кинетической энергии:ΔWk=A.
Если работа А>0, то кинетическая энергия тела возрастает, и наоборот.
Кинетическая энергия (как энергия вообще) измеряется в Джоулях, как и работа.
- Мпс россии
- 1. Введение
- 2. Физические основы механики
- Основные механические модели
- 1. Материальная точка.
- 2. Абсолютно твердое тело.
- 2.1. Кинематика материальной точки
- Основные кинематические уравнения равнопеременного движения:
- Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения
- Для характеристики изменения вектора скорости на величину δv введем ускорение :
- Угловая скорость и угловое ускорение
- 2.2. Динамика материальной точки и поступательного движения твердого тела
- Взаимодействие тел. Второй закон Ньютона. Сила. Масса. Импульс. Центр масс
- 2.3. Законы сохранения в механике
- Момент силы. Момент импульса. Закон сохранения момента импульса
- Энергия. Работа. Мощность
- Консервативные и неконсервативные силы
- Закон сохранения энергии
- 2.4. Принцип относительности в механике
- 2.5. Элементы релятивистской динамики (специальной теории относительности)
- 2.6. Элементы механики твердого тела
- 2.7. Элементы механики сплошных сред
- Упругое тело. Деформация. Закон Гука
- 3. Электричество и магнетизм
- 3.1. Электростатика
- Закон Кулона
- Электрическое поле
- Принцип суперпозиции электрических полей
- Поток вектора напряженности электрического поля
- Теорема Остроградского – Гаусса и ее применение к расчету полей
- Поле равномерного заряженной бесконечной прямолинейной нити
- Поле равномерно заряженной плоскости
- Работа сил электростатического поля при перемещении заряда. Потенциал
- Связь между напряженностью и потенциалом электростатического поля
- Идеальный проводник в электростатическом поле
- Электроемкость уединенного проводника конденсатора
- Энергия заряженного проводника
- Энергия электрического поля. Объемная плотность энергии
- 3.2. Постоянный электрический ток
- Закон Ома
- Дифференциальная форма закона Ома
- Закон Джоуля-Ленца
- Закон Джоуля-Ленца в дифференциальной форме.
- Правила Кирхгофа для разветвленных цепей.
- 3.3. Магнитное поле
- Момент сил, действующих на виток с током в магнитном поле
- Принцип суперпозиции магнитных полей
- Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- Взаимодействие параллельных токов
- Контур с током в магнитном поле. Магнитный поток
- Работа перемещения проводника и контура с током в магнитном поле
- Явление электромагнитной индукции. Закон Фарадея
- Явление самоиндукции
- Токи замыкания и размыкания в цепи
- Явление взаимоиндукции
- Энергия магнитного поля
- 3.4. Статические поля в веществе Диэлектрики в электрическом поле
- Магнитные свойства вещества
- 3.5. Уравнения Максвелла
- Электромагнитные волны
- 3.6. Принцип относительности в электродинамике
- 3.7. Квазистационарное магнитное поле
- 4. Физика колебаний и волн
- 4.1. Кинематика гармонических колебаний
- Сложение гармонических колебаний
- 4.2. Гармонический осциллятор
- Свободные затихающие колебания
- Логарифмический декремент затухания
- 4.3. Ангармонические колебания
- 4.4. Волновые процессы
- 4.5. Интерференция волн
- Интерференция от двух когерентных источников
- Стоячие волны
- Интерференция в тонких пленках
- 4.6. Дифракция волн
- Принцип Гюйгенса-Френеля
- Дифракция Фраунгофера от одной щели
- Дифракция от многих щелей. Дифракционная решетка.
- 4.7. Поляризация света
- Поляризация при отражении света от диэлектрика
- Двойное лучепреломление в анизотропных кристаллах
- Закон Малюса
- Степень поляризации
- Вращение плоскости поляризации
- 4.8. Взаимодействие электромагнитных волн с веществом
- 5. Квантовая физика
- 5.1. Экспериментальное обоснование основных идей квантовой механики. Взаимодействие фотонов с электронами
- Внешний фотоэффект
- Эффект Комптона
- Давление света
- 5.2. Корпускулярно – волновой дуализм
- Соотношение неопределенностей
- 5.3. Квантовые состояния и уравнение Шредингера
- 5.4. Атом
- Теория Бора для водородоподобных атомов.
- 5.5 Многоэлектронные атомы
- 5.6. Молекулы
- 5.7. Электроны в кристаллах
- 5.8. Элементы квантовой электроники
- 5.9. Атомное ядро
- Радиоактивность. Закон радиоактивного распада
- Закономерности α и β - распада
- Ядерные реакции. Законы сохранения в ядерных реакциях
- Реакция деления ядра. Цепная реакция. Ядерный реактор
- Реакции синтеза. Термоядерные реакции
- Элементарные частицы
- 6. Статистическая физика и термодинамика
- 6.1. Элементы молекулярно-кинетической теории
- Модель идеального газа
- Число степеней свободы молекул
- Среднее число столкновений и средняя свободного пробега молекул
- Явления переноса
- Электрический ток в вакууме. Термоэлектронная эмиссия
- Электрический ток в газах
- 6.2. Основы термодинамики Внутренняя энергия идеального газа. Работа
- Внутренняя энергия идеального газа
- Первый закон термодинамики
- Изопроцессы
- Термодинамические процессы, циклы
- Круговые процессы. Второе начало термодинамики.
- Цикл Карно
- Фазовые превращения
- Реальные газы. Уравнение Ван – дер – Ваальса
- 6.3. Функции распределения. Закон Максвелла для распределения молекул по скоростям
- Барометрическая формула (распределение Больцмана)
- Порядок и беспорядок в природе. Синергетика
- Магнетики в тепловом равновесии. Ферромагнетизм
- 7. Заключение Современная физическая картина мира