logo search
АммерКарелинФизикаЛекц

Угловая скорость и угловое ускорение

При движении материальной точки по окружностирадиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.

Угол φ можно измерять в радианах. 1 радравен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.

или12 = Rφ(2.5.)

Продифференцируем уравнение (2.5.)

(2.6.)

Величина dℓ/dt=Vмгн. Величину ω =dφ/dtназываютугловой скоростью(измеряется в рад/с). Получим связь между линейной и угловой скоростями:

V = ωR, (2.7)

Величина ω векторная. Направление вектораопределяетсяправилом винта (буравчика): оно совпадает с направлением перемещения винта, ориентированного вдоль оси вращения точки или тела и вращаемого в направлении поворота тела (рис.2.2), т.е..

Рис.2.2

Угловым ускорениемназывается векторная величина производная от угловой скорости (мгновенное угловое ускорение)

, (2.8.)

Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.

Число оборотов n тела в единицу времени называют частотой вращения.

Время Т одного полного оборота тела называют периодом вращения. При этом R опишет угол Δφ=2π радиан

n=1/T

С учетом сказанного

, (2.9)

Уравнение (2.8) можно записать следующим образом:

(2.10)

Тогда тангенциальная составляющая ускорения

а=R(2.11)

Нормальное ускорение аnможно выразить следующим образом:

с учетом (2.7) и (2.9)

(2.12)

Тогда полное ускорение .

Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:

,

.