9.1. Тепловая защита в ракетных двигателях твердого топлива
Отсутствие жидкости на борту твердотопливной УБР приводит к принципиально другой организации тепловой защиты несущей конструкции: специальными материалами. Эти материалы представляют собой искусственные изотропные и анизотропные композиции, обеспечивающие тепловую изоляцию несущей конструкции и прогнозируемый унос поверхностного слоя при воздействии потока продуктов сгорания.
Материалы можно разделить на облицовки, теплоизоляционные слои и многофункциональные композиции. Облицовки обеспечивают стойкость первого слоя тепловой защиты от разрушения при взаимодействии с потоком продуктов сгорания ТТ, но при этом может происходить унос материалов с прогнозируемой скоростью. В качестве облицовок используют сплавы на основе вольфрама для минимального сечения сопла, УУКМ; входные и сверхзвуковые части сопел изготавливают из углепластиков. Стеклопластики в качестве облицовок применяют или при невысоких значениях температуры продуктов сгорания (баллиститные топлива), или для концевых частей сопел ДУ маршевых ступеней. Это вызвано наличием плавкого наполнителя - кварцевого стекла (Тпл ≈ 1800К), что приводит к большому уносу поверхностного слоя, а испарения оксида кремния в условиях РДТТ не наступает.
Теплоизоляционные слои обладают низкой проводимостью теплоты, но подвержены значительному разрушению уже при слабом уровне воздействия движущегося газа. Многофункциональные материалы одновременно выполняют функции тепловой защиты и несущей конструкции, характерный пример в РДТТ - насадки концевых частей сопел большой степени расширения. В зависимости от уровня воздействия окружающей элемент конструкции среды один и тот же материал может быть как облицовкой, так и изолятором.
Геометрия заряда РДТТ с центральным утопленным соплом исключает возникновение больших скоростей обтекания элементов корпуса (т.е. больших значений конвективных тепловых потоков), материалы тепловой защиты подвержены в основном нагреву излучением. Поэтому тепловая защита корпуса двигателя выполнена из легких ( ) эластичных низкотеплопроводных материалов на основе каучуков и резин без армирования наполнителем.
В многослойных конструкциях теплоизоляционные слои располагают между облицовкой (эрозионно-стойким слоем) и защищаемым элементом в целях минимизации общей массы данного узла двигателя. В зависимости от уровня напряженно-деформированного состояния и температуры элементов изолятором может быть ТЗМ на основе каучуков, а также низкотеплопроводный угле- и стеклопластик.
Материалы облицовок представляют собой изотропные и анизотропные композиции, состоящие из матрицы (связующего) и наполнителя, а также дефектов. Угле- и стеклопластики имеют органическое связующее и наполнители из угольной или кремнеземной ткани. Детали тепловой защиты тракта сопла получают прессованием и намоткой. Прессованием можно получить слоистые (анизотропные) и неориентированные (изотропные) композиты. Крупногабаритные элементы тракта (раструбы сопел) получают намоткой пропитанных связующих лент наполнителя на оправки с последующим отверждением под давлением и механической обработкой.
Графиты получают прессованием смеси каменноугольного пека (связующего) с нефтяным пеком (наполнителем) с последующей графитизацией при Т > 2400 К.
Пирографиты получают осаждением углерода при разложении метана на поверхность графита в интервале температур 2373...2673К, и пирографит по своим свойствам приближается к свойствам монокристалла - ему присущи резкая анизотропия и экстремальные значения теплопроводности, прочности и других характеристик.
УУКМ имеют наполнители из углеродных и графитовых тканей и волокон (в том числе и объемного плетения) и матрицу из пироуглерода. Ряд деталей получают пропиткой углеграфитового наполнителя связующим из органических смол при карбонизации заготовки в инертной среде (Т = 1273... 1373 К) и уплотнении карбонизированной заготовки пироуглеродом - осаждением пленок органических веществ при Т=1273...1473К.
Другие детали получают намоткой или выкладкой непропитанных связующим углеграфитовых лент или волокон на оправку с последующим уплотнением пироуглеродом в печи.
Насадки - концевые части сопел большой степени расширения выполняют из сплавов на основе ниобия или из низкоплотных УУКМ.
КМ обладают разнообразием структур, что приводит к различным значениям свойств элементов тракта, формально выполненных из одинаковых наполнителей и матриц. К дисперсным относят ТЗМ на основе резин и каучуков, а также прессованные угле- и стеклопластики с наполнителями из мелких кусков волокон и тканей (но некоторая анизотропия свойств наблюдается). Слоистые структуры имеют угле- и стеклопластики, получаемые намоткой, к ним же относятся графиты и пирографиты, имеющие анизотропию свойств по направлениям осей прессования (осаждения). УУКМ также имеют анизотропию свойств в зависимости от технологии изготовления. Анизотропия свойств материалов является сильным инструментом для создателей тепловой защиты - меняя значение угла ориентации слоев наполнителя тепловому потоку можно получать один и тот же материал с разными теплофизическими свойствами (теплопроводность).
Рассмотрим механизм работы углепластика при нагреве потоком продуктов сгорания ТТ. Температурные поля тонких осесимметричных элементов тракта (сопла РДТТ) определяют решением одномерного уравнения теплопроводности:
(9.1) где с, λ, ρ теплоемкость, теплопроводность и плотность материала, R - текущий радиус оболочки, - тепловой эффект фазовых переходов в материалах при нагреве. Для КМ теплопроводность есть некоторая эффективная характеристика, представляющая свойства композита как некоторого целого.
Начальным условием служит равномерное распределение температуры по толщине многослойной стенки:
(9.2)
Граничное условие на рабочей поверхности материала записывают модификацией граничного условия III рода на движущейся границе:
(9.3)
Здесь плотность конвективного теплового потока в стенку тракта записана в общем виде для сжимаемого течения коэффициент теплообмена, HаСТ, HСТ - значения энтальпии газового потока при температуре восстановления на адиабатической стенке и при температуре стенки конструкции. Плотность радиационного теплового потока представлена в форме закона Стефана-Больцмана (8.1), Те - температура ядра потока. Далее обозначено: Q - тепловой эффект окисления поверхностного слоя с массовой скоростью , RСТ, R0 - текущее и начальное значение радиуса оболочки, - значение суммарной массовой скорости уноса материала (скорости окисления и механического разрушения поверхностного слоя), ρ0 - плотность материала исходного состава (до начала фазовых переходов), ак - коксовое число материала с матрицей, подверженной пиролизу (массовая доля твердого остатка материала после завершения термической деструкции).
Для многослойной конструкции уравнение теплопроводности (9.1) справедливо для каждого слоя, на стыках слоев записывают условие сопряжения - равенство тепловых потоков и температур.
Граничным условием на внешней поверхности защищаемой конструкции (последнего слоя) принимают либо условие изоляции:
либо условия теплообмена с окружающей внешней средой. Это может быть радиационный тепловой поток от конструкции в окружающую среду при полете ракеты, при стендовых испытаниях может происходить конвективный теплообмен с окружающей двигатель атмосферой.
Схему такого прогрева коксующегося КМ иллюстрирует рис. 9.1., на котором в произвольный момент времени показаны профиль температуры, зона пиролиза и продукты пиролиза, фильтрующиеся по порам коксового остатка в пограничный слой на поверхности кокса и воздействующие на КМ тепловые потоки.
В уравнении (9.1) член содержит две составляющих, учитывающих тепловой эффект разложения матрицы и поглощение теплоты при фильтрации газообразных продуктов пиролиза по порам коксового остатка. Тепловой эффект разложения матрицы оценивают в концепции фронта пиролиза - пиролиз происходит в узкой области при достижении некоторой характерной изотермы:
, т.е. полусуммы температуры начала пиролиза и температуры его окончания. Величина теплового эффекта связана со скоростью потери массы соотношением:
где ΔJ – собственно тепловой эффект. Учет поглощения теплоты при фильтрации газов пиролиза выполняют при допущении о равенстве температур коксового остатка и движущегося газа с помощью конвективного члена , в котором и - теплоемкость и массовая скорость движения продуктов пиролиза.
Теплоемкость пиролизного газа определяют расчетным путем, массовую скорость его оценивают по соотношению:
где - доля связующего, перешедшего в газообразное состояние. Тогда уравнение (9.1) примет вид:
(9.4) где φс- доля связующего (матрицы) в материале.
Теплозащитные материалы корпусов РДТТ на основе каучуков и резин имеют большие значения доли связующего, т.е. большое выделение газа пиролиза, непрочный коксовый остаток, подверженный усадкам и разбуханию. Математические модели прогрева и разрушения таких материалов сложны и требуют знания ряда экспериментальных констант, определение которых выливается в длительные исследования высокотемпературной теплофизики.
В составных элементах горловины сопел, узлах стыка насадка из УУКМ и углепластикового раструба, а также в ряде других деталей конструкции необходимо учитывать пространственный характер распространения теплоты и анизотропию свойств материалов. Обычно используют модели нестационарной двумерной теплопроводности в системе R – z.
.
Рис. 9.1. Схема прогрева коксующегося КМ (углепластик)
|
ЛЕКЦИЯ 10
- 16.3. Схемные и конструктивные решения ракетных двигателей
- Литература
- 1. Основы теории термических ракетных двигателей
- 1.1. Введение
- 1.2. Краткий исторический экскурс
- 1.3. Классификация реактивных двигателей
- 2.1. Ракетный двигатель как тепловая машина летательного аппарата
- 2.2. Выходные показатели ракетного двигателя
- 2.2.1. Тяга ракетного двигателя
- 2.2.2. Удельные параметры ракетного двигателя
- 2.5. Зависимость начальной массы ракеты от удельного импульса
- 2.2.3. Расходный комплекс камеры
- 2.2.4. Коэффициент тяги
- 2.2.5. Геометрическая степень расширения сопла
- 2.2.6. Удельная масса ракетного двигателя
- 2. Генерация рабочего тела
- 3.1. Оценка эффективности ракетного двигателя
- 3.2. Топлива ракетных двигателей
- 3.3. Жидкие ракетные топлива
- 3.3.1. Коэффициент избытка окислителя
- 3.3.2. Основные характеристики жидких топлив
- 3.3.3. Твердые ракетные топлива
- Лекция 4
- 4.1. Гибридные топлива
- 4.2. Горение жидких топлив
- 4.3. Горение твердых топлив
- 5.1. Горение гибридных топлив
- 5.2. Термогазодинамика ракетного двигателя
- 5.2.1. Термодинамические расчеты состава и параметров рабочего тела
- 5.2.2. Термогазодинамика потока рабочего тела
- 6.1. Течение газа в соплах
- 6.2. Профилирование камеры жидкостного ракетного двигателя
- 6.2.1. Определение размеров камеры сгорания
- 6.2.2. Профилирование сопла
- 6.2.3. Профилирование сопла ракетного двигателя твердого топлива
- 6.2.4. Потери удельного импульса в ракетных двигателях (в камере жрд и рдтт)
- 6.2.5. Потери удельного импульса в сопле
- 3. Схемные и конструктивные решения жидкостных ракетных двигателей
- 7.1. Тепломассообмен в ракетных двигателях
- 7.1.1. Конвективный теплообмен
- 7.1.2. Массообмен по тракту сопла ракетного двигателя твердого топлива
- 8.1. Радиационный теплообмен в ракетных двигателях
- 8.2. Перенос теплоты в конструкциях ракетных двигателей
- 8.3. Организация тепловой защиты жидкостного ракетного двигателя
- 9.1. Тепловая защита в ракетных двигателях твердого топлива
- 10.1. Основные узлы и агрегаты жидкостного ракетного двигателя
- 10.2. Схемы двигательных установок с вытеснительной системой подачи топлива
- 10.3. Схемы жидкостных ракетных двигателей с турбонасосной системой подачи топлива
- 11.1. Турбонасосные агрегаты жидкостных ракетных двигателей
- 11.2. Величины, характеризующие работу насоса
- 12.1. Турбины турбонасосных агрегатов
- 12.1.1. Классификация турбин
- 12.2. Жидкостные генераторы газа
- 4. Схемные и конструктивные решения жидкостных ракетных двигателей малой тяги
- 13.1. Движение космических летательных аппаратов
- 13.2. Управление движением космического летательного аппарата Активные, пассивные и комбинированные системы управления
- 13.3. Функциональная схема системы управления движением кла
- 13.4. Классификация ракетных двигателей систем управления. Управление движением кла с помощью ракетного двигателя
- 13.5. Динамические характеристики жрдмт
- 13.6. Экономичность жрдмт
- 14.1. Основные требования к жрдмт
- 14.2. Общие принципы проектирования жрдмт
- 14.3. Проектирование и расчет параметров и характеристик жрдмт
- 1. Назначение
- 2. Состав
- 3. Основные технические требования
- 4. Номинальные условия работы
- 5. Характеристики ракетного двигателя Статические характеристики жидкостного ракетного двигателя
- 15.1. Дроссельная (расходная) характеристика жрд
- 15.2. Высотная характеристика рд
- 15.2.1. Высотная характеристика двигателя с постоянным соплом
- 15.2.2. Высотная характеристика двухпозиционного (раздвижного) сопла
- 16.1. Неустойчивость процессов в жидкостных ракетных двигателях
- 16.2. Запуск, останов, регулирование и управление жрд
- 6. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.3. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.4. Корпуса маршевых рдтт с зарядами
- 17.1. Сопла маршевых рдтт и системы создания боковых усилий
- 17.2. Вспомогательные рдтт