1.3. Классификация реактивных двигателей
Ракетно-космические системы являются областью техники, характеризуемой специфическими летальными аппаратами и двигателями. Достижение космических скоростей стало возможно только на основе реактивного принципа движения – движения под действием силы отдачи рабочего тела, отбрасываемого от аппарата. Между реактивным и нереактивным принципами нет четкой границы. Любой способ передвижения основан на силе отдачи, т.е. отбросе какой-либо массы в обратном направлении. Примерами являются движения человека, автомобиля, лодки и т.д.
Характерными особенностями РД является:
-автономность от окружающей среды;
-независимость тяги от скорости движения ЛА;
-высокая концентрация подводимой энергии на единицу массы рабочего тела.
Источники энергии для работы РД. Выделим основные.
Химическая энергия. Носителем ее являются химические топлива – вещества, способные выделять теплоту в результате химических превращений.
Ядерная энергия. Ее источниками являются ядерные топлива – вещества, способные выделять теплоту в результате ядерных превращений:
- распад радиоактивных изотопов (непрерывная генерация теплоты);
- деление ядер (с момента достижения критической массы);
- термоядерный синтез.
Электрическая энергия. Источниками ее могут быть: солнечные батареи, электромеханическая установка, атомная электростанция и др.
В соответствие с видом первичной энергии различают химические, ядерные и электрические РД. Для реактивного движения может быть реализована механическая энергия в форме энергии газа, сжатого до большого давления в шар–баллоне на борту ЛА, но такой способ неэффективен ввиду низкой плотности энергии.
В зависимости от исходной формы рабочего тела можно выделить два принципиальных случая:
1. Источник рабочего тела и энергии совмещены. Таковыми являются химические топлива – энергия, выделяемая ими при горении, сообщается продуктам их реакции. То же происходит со сжатым газом.
2. Источники энергии и рабочего тела разделены. Это присуще ядерным и электрическим двигателям. Продукты ядерных реакций нецелесообразно использовать в качестве рабочего тела ввиду малости их массы и опасности радиоактивного заражения окружающей среды. Предусматривают специальное рабочее тело, воспринимающее энергию от независимого источника. Подвод энергии осуществляют в реакторе, а разгон массы – в ускорителе (сопле). Для нетермических электрических РД характерным является ускорение рабочего тела при малом расходе массы, их применяют для разгона КА уже после достижения первой космической скорости.
Вернемся к РД на химическом топливе, нашедшим наиболее широкое применение.
Классификация их связана с видом применяемого топлива. Химические ракетные топлива способны к экзотермическим реакциям, основные виды которых следующие:
Горение. Горение или окисление – это основной способ получения энергии в форме теплоты. В реакции горения необходимо участие окислительных и горючих элементов, которые могут находиться в составе одного или нескольких веществ, образующих топливо. Обычно вещества, состоящие преимущественно из окислительных компонентов для окисления горючего, называют окислителями, а вещества, в которых содержатся преимущественно горючие элементы – горючими.
Разложение. К экзотермическому разложению способны некоторые индивидуальные вещества, при образовании молекул которых затрачена теплота.
Рекомбинация. Тепловой эффект рекомбинации, т.е. воссоединения атомов или радикалов, обладающих свободной валентностью, очень значителен, и его применение в РД заманчиво. Однако способы получения и хранения свободных атомов и радикалов не найдены и топлива на их основе не созданы.
Характерным признаком химического топлива является агрегатное состояние его компонентов. Однофазное топливо может быть жидким или твердым. Гибридное топливо представляет собой сочетание твердого и жидкого компонентов.
Твердое топливо размещают в камере сгорания двигателя, жидкие компоненты хранят в специальных емкостях – баках, откуда их подают в двигатель.
Однокомпонентное жидкое топливо поступает в двигатель в виде одной жидкости, представляющей собой индивидуальное вещество, либо однородную механическую смесь, либо раствор различных веществ. Двухкомпонентное жидкое топливо состоит из двух раздельно хранящихся и раздельно подающихся в двигатель компонентов: окислителя и горючего, которые сами по себе могут быть индивидуальными веществами или растворами (смесями) веществ. Такое топливо раздельной подачи является наиболее распространенным видом жидкого ракетного топлива. Возможно применение трехкомпонентных жидких и гибридных топлив.
Твердые топлива содержат в своем составе окислительные и горючие элементы, весь запас их в виде топливных зарядов размещается в камере сгорания двигателя.
Типы реактивных двигателей показаны на рис.1.1. В дальнейшем будем рассматривать только ракетные двигатели на химическом топливе: ЖРД, РДТТ и гибридные РД.
Реактивные двигатели разделяют на двигатели непрямой и прямой реакции. К первым относятся винтомоторный двигатель (ри.1.1., а), для которого характерно следующее. Собственно в двигателе используются два компонента топлива: горючее и воздух окружающей среды, тепловая энергия продуктов сгорания преобразуется в механическое движение винта. Система содержит движитель – винт, который отбрасывает окружающий воздух (рабочего тело) и создает тягу. Получается, что двигатель и движитель разделены, используют разные рабочие тела и всегда есть необходимость в окружающем воздухе, как окислителе для двигателя, и в рабочем теле для движителя. Преобразование энергии для такого двигателя можно записать следующим образом:
Характерным примером двигателя прямой реакции является воздушно – реактивный двигатель, кото-рый начал разрабатываться в Германии в 1938 г. для крылатых ракет ФАУ-1 (рис. 1.1., б).
Его особенностями являются: совмещение двигателя и движителя и обязательное наличие воздуха в окружающей среде. А ракетный двигатель не требует окислителя в окружающей среде, имеет совмещенные двигатель и движитель, топливо является источником энергии и рабочего тела (рис 1.1., в). Таким образом, ракетный двигатель – реактивный двигатель прямой реакции, имеющий источник рабочего тела на борту. Преобразование энергии для такого типа двигателя можно записать так:
Термическим ракетным двигателем (РД) является ракетный двигатель, в котором кинетическая энергия ускоряемого рабочего тела получается из тепловой энергии. Превращение теплоты в кинетическую энергию происходит в процессе расширения рабочего тела в сопле, являющимся признаком термического двигателя. Перед расширением необходимо организовать нагрев рабочего тела.
Рис 1.2 Классификация реактивных двигателей
За пределами земной атмосферы РД являются пока единственными пригодными для управляемого полета ЛА. В соответствии с задачами управления полета ЛА ракетные двигатели выполняют две основные функции:
Создание тяги, управляющей перемещением аппарата в поле сил тяготения и в среде с сопротивлением;
Создание управляющих усилий и моментов для управления движением центра масс (стабилизации) и для целей ориентации.
Обычно различают основные (маршевые) двигатели и вспомогательные. Маршевые двигатели осуществляют разгон ЛА на активном участке траектории, тяга их может достигать значения десятков меганьютонов, а среди вспомогательных различают: тормозные, рулевые, коррекции - тяга их может иметь небольшие значения.
Двигатели для коррекции и управления КА обычно имеют тягу в диапазоне 0.01÷1600 Н и их называют ракетными двигателями малой тяги (РДМТ).
ЛЕКЦИЯ 2
- 16.3. Схемные и конструктивные решения ракетных двигателей
- Литература
- 1. Основы теории термических ракетных двигателей
- 1.1. Введение
- 1.2. Краткий исторический экскурс
- 1.3. Классификация реактивных двигателей
- 2.1. Ракетный двигатель как тепловая машина летательного аппарата
- 2.2. Выходные показатели ракетного двигателя
- 2.2.1. Тяга ракетного двигателя
- 2.2.2. Удельные параметры ракетного двигателя
- 2.5. Зависимость начальной массы ракеты от удельного импульса
- 2.2.3. Расходный комплекс камеры
- 2.2.4. Коэффициент тяги
- 2.2.5. Геометрическая степень расширения сопла
- 2.2.6. Удельная масса ракетного двигателя
- 2. Генерация рабочего тела
- 3.1. Оценка эффективности ракетного двигателя
- 3.2. Топлива ракетных двигателей
- 3.3. Жидкие ракетные топлива
- 3.3.1. Коэффициент избытка окислителя
- 3.3.2. Основные характеристики жидких топлив
- 3.3.3. Твердые ракетные топлива
- Лекция 4
- 4.1. Гибридные топлива
- 4.2. Горение жидких топлив
- 4.3. Горение твердых топлив
- 5.1. Горение гибридных топлив
- 5.2. Термогазодинамика ракетного двигателя
- 5.2.1. Термодинамические расчеты состава и параметров рабочего тела
- 5.2.2. Термогазодинамика потока рабочего тела
- 6.1. Течение газа в соплах
- 6.2. Профилирование камеры жидкостного ракетного двигателя
- 6.2.1. Определение размеров камеры сгорания
- 6.2.2. Профилирование сопла
- 6.2.3. Профилирование сопла ракетного двигателя твердого топлива
- 6.2.4. Потери удельного импульса в ракетных двигателях (в камере жрд и рдтт)
- 6.2.5. Потери удельного импульса в сопле
- 3. Схемные и конструктивные решения жидкостных ракетных двигателей
- 7.1. Тепломассообмен в ракетных двигателях
- 7.1.1. Конвективный теплообмен
- 7.1.2. Массообмен по тракту сопла ракетного двигателя твердого топлива
- 8.1. Радиационный теплообмен в ракетных двигателях
- 8.2. Перенос теплоты в конструкциях ракетных двигателей
- 8.3. Организация тепловой защиты жидкостного ракетного двигателя
- 9.1. Тепловая защита в ракетных двигателях твердого топлива
- 10.1. Основные узлы и агрегаты жидкостного ракетного двигателя
- 10.2. Схемы двигательных установок с вытеснительной системой подачи топлива
- 10.3. Схемы жидкостных ракетных двигателей с турбонасосной системой подачи топлива
- 11.1. Турбонасосные агрегаты жидкостных ракетных двигателей
- 11.2. Величины, характеризующие работу насоса
- 12.1. Турбины турбонасосных агрегатов
- 12.1.1. Классификация турбин
- 12.2. Жидкостные генераторы газа
- 4. Схемные и конструктивные решения жидкостных ракетных двигателей малой тяги
- 13.1. Движение космических летательных аппаратов
- 13.2. Управление движением космического летательного аппарата Активные, пассивные и комбинированные системы управления
- 13.3. Функциональная схема системы управления движением кла
- 13.4. Классификация ракетных двигателей систем управления. Управление движением кла с помощью ракетного двигателя
- 13.5. Динамические характеристики жрдмт
- 13.6. Экономичность жрдмт
- 14.1. Основные требования к жрдмт
- 14.2. Общие принципы проектирования жрдмт
- 14.3. Проектирование и расчет параметров и характеристик жрдмт
- 1. Назначение
- 2. Состав
- 3. Основные технические требования
- 4. Номинальные условия работы
- 5. Характеристики ракетного двигателя Статические характеристики жидкостного ракетного двигателя
- 15.1. Дроссельная (расходная) характеристика жрд
- 15.2. Высотная характеристика рд
- 15.2.1. Высотная характеристика двигателя с постоянным соплом
- 15.2.2. Высотная характеристика двухпозиционного (раздвижного) сопла
- 16.1. Неустойчивость процессов в жидкостных ракетных двигателях
- 16.2. Запуск, останов, регулирование и управление жрд
- 6. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.3. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.4. Корпуса маршевых рдтт с зарядами
- 17.1. Сопла маршевых рдтт и системы создания боковых усилий
- 17.2. Вспомогательные рдтт