4.1. Гибридные топлива
Гибридным называют топливо, в котором один компонент перед запуском двигателя находится в твердом виде, а другой - в жидком. Твердый компонент размещен в корпусе двигателя (аналогия с РДТТ), жидкий - в отдельном баке. Топлива с жидким окислителем называют топливами прямой схемы, а с жидким горючим - обратной. Эти топлива могут быть самовоспламеняющимися и несамовоспламеняющимися. Требования к гибридным топливам аналогичны требованиям к жидким и твердым топливам, специфичным является условие «несамогорение» твердого компонента при выключении подачи жидкого. Это требование возникает для двигателей многократного включения. Рассмотрим компоненты топлив прямой схемы. В качестве окислителя могут быть использованы все традиционные окислители ЖРД. Наибольшее применение нашел кислород по соображениям высокого значения удельного импульса, а также стоимости и опыта эксплуатации. Однако такой криогенный компонент не подходит к ДУ длительного срока эксплуатации. В качестве твердого горючего могут быть применены полимерные материалы горючих-связующих твердых топлив, но из соображений механических характеристик и возможности изготовления больших зарядов используют полиэтилен, полиметилметакрилат, полиизобутилен.
Полиэтилен, химическая формула , плотность , имеет высокие механические свойства. Полиметилметакрилат (ПММА), химическая формула ( ), известен как «оргстекло», обладает высокой прочностью, малой эластичностью. Энергетические характеристики гибридных топлив прямой схемы приведены в таблице 4.7.
Таблица 4.7
Топливо | Доля горючего | Доля окислителя |
|
|
|
+ ПЭ | 0,267 | 0,733 | 3191 | 3696 | 1072 |
+ ПММА | 0,394 | 0,606 | 3000 | 3562 | 1056 |
По значению удельного импульса пара + ПЭ не уступает паре «кислород + керосин» при несколько большей плотности. Особенно стоит вопрос о выборе компонентов и их соотношения. В зависимости от системы подачи жидкого компонента (вытеснительная или насосная) значение давления в баке определяет массовое совершенство ДУ в целом. При вытеснительной системе подачи необходимо минимизировать массу окислителя, т.е. искать топливо с меньшей долей окислителя.
Топливо обратной схемы представляет собой тройную систему: жидкое горючее и два твердых продукта - окислитель и связующее, объединенных в твердый компонент, называемый «окислитель». В качестве горючего используют керосин Т-1, НДМГ и другие. «Окислитель» представляет собой композицию на основе перхлоратов и полимерного связующего. Энергетические показатели топлива на основе керосина, перхлората нитрония и фторполимерного связующего приведены в таблице 4.8. Данная рецептура не содержит криогенных составляющих и может быть реализована в ДУ многократного включения с большим сроком эксплуатации. Принятое соотношение компонентов учитывает прочностные характеристики твердого «окислителя».
Таблица 4.8
Топливо | Доля горючего | Доля окислителя | Доля связующего |
|
|
|
Керосин + перхлорат нитрония + фторполимер |
0,15 |
0,7225 |
0,1275 |
2822 |
3533 |
1722 |
- 16.3. Схемные и конструктивные решения ракетных двигателей
- Литература
- 1. Основы теории термических ракетных двигателей
- 1.1. Введение
- 1.2. Краткий исторический экскурс
- 1.3. Классификация реактивных двигателей
- 2.1. Ракетный двигатель как тепловая машина летательного аппарата
- 2.2. Выходные показатели ракетного двигателя
- 2.2.1. Тяга ракетного двигателя
- 2.2.2. Удельные параметры ракетного двигателя
- 2.5. Зависимость начальной массы ракеты от удельного импульса
- 2.2.3. Расходный комплекс камеры
- 2.2.4. Коэффициент тяги
- 2.2.5. Геометрическая степень расширения сопла
- 2.2.6. Удельная масса ракетного двигателя
- 2. Генерация рабочего тела
- 3.1. Оценка эффективности ракетного двигателя
- 3.2. Топлива ракетных двигателей
- 3.3. Жидкие ракетные топлива
- 3.3.1. Коэффициент избытка окислителя
- 3.3.2. Основные характеристики жидких топлив
- 3.3.3. Твердые ракетные топлива
- Лекция 4
- 4.1. Гибридные топлива
- 4.2. Горение жидких топлив
- 4.3. Горение твердых топлив
- 5.1. Горение гибридных топлив
- 5.2. Термогазодинамика ракетного двигателя
- 5.2.1. Термодинамические расчеты состава и параметров рабочего тела
- 5.2.2. Термогазодинамика потока рабочего тела
- 6.1. Течение газа в соплах
- 6.2. Профилирование камеры жидкостного ракетного двигателя
- 6.2.1. Определение размеров камеры сгорания
- 6.2.2. Профилирование сопла
- 6.2.3. Профилирование сопла ракетного двигателя твердого топлива
- 6.2.4. Потери удельного импульса в ракетных двигателях (в камере жрд и рдтт)
- 6.2.5. Потери удельного импульса в сопле
- 3. Схемные и конструктивные решения жидкостных ракетных двигателей
- 7.1. Тепломассообмен в ракетных двигателях
- 7.1.1. Конвективный теплообмен
- 7.1.2. Массообмен по тракту сопла ракетного двигателя твердого топлива
- 8.1. Радиационный теплообмен в ракетных двигателях
- 8.2. Перенос теплоты в конструкциях ракетных двигателей
- 8.3. Организация тепловой защиты жидкостного ракетного двигателя
- 9.1. Тепловая защита в ракетных двигателях твердого топлива
- 10.1. Основные узлы и агрегаты жидкостного ракетного двигателя
- 10.2. Схемы двигательных установок с вытеснительной системой подачи топлива
- 10.3. Схемы жидкостных ракетных двигателей с турбонасосной системой подачи топлива
- 11.1. Турбонасосные агрегаты жидкостных ракетных двигателей
- 11.2. Величины, характеризующие работу насоса
- 12.1. Турбины турбонасосных агрегатов
- 12.1.1. Классификация турбин
- 12.2. Жидкостные генераторы газа
- 4. Схемные и конструктивные решения жидкостных ракетных двигателей малой тяги
- 13.1. Движение космических летательных аппаратов
- 13.2. Управление движением космического летательного аппарата Активные, пассивные и комбинированные системы управления
- 13.3. Функциональная схема системы управления движением кла
- 13.4. Классификация ракетных двигателей систем управления. Управление движением кла с помощью ракетного двигателя
- 13.5. Динамические характеристики жрдмт
- 13.6. Экономичность жрдмт
- 14.1. Основные требования к жрдмт
- 14.2. Общие принципы проектирования жрдмт
- 14.3. Проектирование и расчет параметров и характеристик жрдмт
- 1. Назначение
- 2. Состав
- 3. Основные технические требования
- 4. Номинальные условия работы
- 5. Характеристики ракетного двигателя Статические характеристики жидкостного ракетного двигателя
- 15.1. Дроссельная (расходная) характеристика жрд
- 15.2. Высотная характеристика рд
- 15.2.1. Высотная характеристика двигателя с постоянным соплом
- 15.2.2. Высотная характеристика двухпозиционного (раздвижного) сопла
- 16.1. Неустойчивость процессов в жидкостных ракетных двигателях
- 16.2. Запуск, останов, регулирование и управление жрд
- 6. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.3. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.4. Корпуса маршевых рдтт с зарядами
- 17.1. Сопла маршевых рдтт и системы создания боковых усилий
- 17.2. Вспомогательные рдтт