3.3.1. Коэффициент избытка окислителя
Рассмотрим соотношение компонентов в двухкомпонентном топливе. Горючее содержит преимущественно элементы с электроположительной валентностью (С, Н, AI, В и др.), а окислитель - с электроотрицательной валентностью: О, CI, F и др. Окислитель и горючее применяют в определенном соотношении. Для обеспечения полного сгорания одного моля горючего - полного замещения валентностей горючих элементов валентностями окислительных элементов - требуется молей окислителя. Величину (молей окислителя/моль горючего) называют мольным стехиометрическим соотношением компонентов топлива.
Число свободных (незамещенных) электроположительных валентностей в одной молекуле горючего составляет , число свободных электроотрицательных валентностей в одной молекуле окислителя - , где vi - валентность, - число атомов химического элемента в условной молекуле горючего и окислителя.
Тогда . (3.4)
Значению соответствует массовое стехиометрическое соотношение (кг окислителя/кг горючего) и объемное стехиометрическое соотношение (м3 окислителя/м3 горючего) компонентов топлива. Из определения следует, что , (3.5)
Рассмотрим пример вычисления стехиометрического соотношения компонентов топлива. Значение валентности некоторых элементов приведены в таблице 3.1.
Таблица 3.1
Элемент | О | Н | С | N | F | Al |
| -2 | 1 | 4 | 0 | -1 | 3 |
Топливо: окислитель - азотная кислота , молярная масса = 63,
горючее - этиловый спирт , молярная масса =46.
, , по (3.4) и (3.5) получим:
, .
Действительное соотношение компонентов в топливе ( или ) отличается от стехиометрического. Отношение величин или соответствующее стехиометрическому значению называют коэффициентом избытка окислителя:
(3.6)
Рассмотрим интервалы , используемые в ЖРД.
Рис 3.3 Зависимость температуры сгорания от
Интервалы изменения в агрегатах ЖРД:
<1 0,1-0,25 - отрицательный кислородный баланс - жидкостные генераторы газа (ЖГГ), жидкостные ракетные двигатели малой тяги (ЖРДМТ),
1,0 (0.5 - 0.95) - маршевые двигатели,
>1 10-20 - ЖГТ (положительный кислородный баланс).
В соответствии с реакционной способностью окислителя и горючего топлива разделяют на самовоспламеняющиеся и несамовоспламеняющиеся. Самовос-пламеняющиеся компоненты топлива во всем диапазоне эксплуатационных температур и давлений реагируют при контакте в жидкой фазе с выделением теплоты. Разогрев горючей смеси инициирует предпламенные экзотермические реакции, которые разогревают топлива до температуры кипения и выше, и происходит воспламенение. Характеризуются временем задержки воспламенения - временем от момента соприкосновения горючего и окислителя в жидкой фазе до появления пламени.
При несамовоспламеняющихся топливных парах специальной системой в момент запуска двигателя создается воспламенительный факел. От него воспламеняются первые порции топлива, поступающие в камеру, а последующие поджигаются продуктами сгорания предшествующих. По интервалу температур сохранения жидкого состояния топлива или их компоненты подразделяют на высококипящие и низкокипящие. Высококипящие - это компоненты, температура кипения которых выше 298 К. При эксплуатации на земле в обычных условиях они представляют собой жидкость и хранятся без потерь на испарение (или с малыми потерями). Низкокипящие компоненты при атмосферном давлении имеют температуру кипения ниже 298 К и находятся в газообразном состоянии.
Среди низкокипящих выделяют группу криогенных компонентов, температура кипения которых ниже 120 К. Такой компонент нельзя хранить как жидкость без принятия специальных мер. Криогенными являются сжиженные газы: кислород, водород, фтор, метан, пропан и др. Для уменьшения потерь на испарение и увеличения плотности возможно применение криогенного компонента в шугообразном (от англ. sugar) состоянии - в виде подвижной двухфазной смеси твердой и жидкой фаз этого компонента.
По физической и химической стойкости в течение длительного времени различают топлива длительного хранения или стабильные и топлива кратковременного хранения. Компоненты стабильных топлив имеют при максимальной температуре в условиях эксплуатации давление насыщенного пара ниже допустимого по условиям прочности баков, допускают хранение в баках ракеты без существенных потерь.
Окончательно сформулируем требования к жидким топливам:
Высокая баллистическая эффективность - большой удельный импульс и большая плотность топлива.
Благоприятные экологические свойства - нетоксичность компонентов и продуктов сгорания.
Неагрессивность компонентов топлива - отсутствие коррозионного действия на конструкционные металлы и разрушающего действия на неметаллические материалы.
Высокая температура кипения, низкая температура замерзания компонентов.
Малое значение вязкости (для условий подачи и смесеобразования), большая теплоемкость и теплопроводность компонентов (важно для организации тепловой защиты).
Высокая химическая и физическая стабильность компонентов в условиях хранения и применения ракеты.
Низкая стоимость компонентов - для справки: тонна жидкого водорода может стоить 10 000$.
Взрывобезопасность.
Продукты сгорания должны находиться в камере в газообразном состоянии. Ни одно топливо всем этим требованиям удовлетворить не может и проектировщики находят компромиссные решения в соответствии с целями создания ракетного комплекса путем проработки различных вариантов рецептур и имеющегося опыта создания и эксплуатации изделий.
- 16.3. Схемные и конструктивные решения ракетных двигателей
- Литература
- 1. Основы теории термических ракетных двигателей
- 1.1. Введение
- 1.2. Краткий исторический экскурс
- 1.3. Классификация реактивных двигателей
- 2.1. Ракетный двигатель как тепловая машина летательного аппарата
- 2.2. Выходные показатели ракетного двигателя
- 2.2.1. Тяга ракетного двигателя
- 2.2.2. Удельные параметры ракетного двигателя
- 2.5. Зависимость начальной массы ракеты от удельного импульса
- 2.2.3. Расходный комплекс камеры
- 2.2.4. Коэффициент тяги
- 2.2.5. Геометрическая степень расширения сопла
- 2.2.6. Удельная масса ракетного двигателя
- 2. Генерация рабочего тела
- 3.1. Оценка эффективности ракетного двигателя
- 3.2. Топлива ракетных двигателей
- 3.3. Жидкие ракетные топлива
- 3.3.1. Коэффициент избытка окислителя
- 3.3.2. Основные характеристики жидких топлив
- 3.3.3. Твердые ракетные топлива
- Лекция 4
- 4.1. Гибридные топлива
- 4.2. Горение жидких топлив
- 4.3. Горение твердых топлив
- 5.1. Горение гибридных топлив
- 5.2. Термогазодинамика ракетного двигателя
- 5.2.1. Термодинамические расчеты состава и параметров рабочего тела
- 5.2.2. Термогазодинамика потока рабочего тела
- 6.1. Течение газа в соплах
- 6.2. Профилирование камеры жидкостного ракетного двигателя
- 6.2.1. Определение размеров камеры сгорания
- 6.2.2. Профилирование сопла
- 6.2.3. Профилирование сопла ракетного двигателя твердого топлива
- 6.2.4. Потери удельного импульса в ракетных двигателях (в камере жрд и рдтт)
- 6.2.5. Потери удельного импульса в сопле
- 3. Схемные и конструктивные решения жидкостных ракетных двигателей
- 7.1. Тепломассообмен в ракетных двигателях
- 7.1.1. Конвективный теплообмен
- 7.1.2. Массообмен по тракту сопла ракетного двигателя твердого топлива
- 8.1. Радиационный теплообмен в ракетных двигателях
- 8.2. Перенос теплоты в конструкциях ракетных двигателей
- 8.3. Организация тепловой защиты жидкостного ракетного двигателя
- 9.1. Тепловая защита в ракетных двигателях твердого топлива
- 10.1. Основные узлы и агрегаты жидкостного ракетного двигателя
- 10.2. Схемы двигательных установок с вытеснительной системой подачи топлива
- 10.3. Схемы жидкостных ракетных двигателей с турбонасосной системой подачи топлива
- 11.1. Турбонасосные агрегаты жидкостных ракетных двигателей
- 11.2. Величины, характеризующие работу насоса
- 12.1. Турбины турбонасосных агрегатов
- 12.1.1. Классификация турбин
- 12.2. Жидкостные генераторы газа
- 4. Схемные и конструктивные решения жидкостных ракетных двигателей малой тяги
- 13.1. Движение космических летательных аппаратов
- 13.2. Управление движением космического летательного аппарата Активные, пассивные и комбинированные системы управления
- 13.3. Функциональная схема системы управления движением кла
- 13.4. Классификация ракетных двигателей систем управления. Управление движением кла с помощью ракетного двигателя
- 13.5. Динамические характеристики жрдмт
- 13.6. Экономичность жрдмт
- 14.1. Основные требования к жрдмт
- 14.2. Общие принципы проектирования жрдмт
- 14.3. Проектирование и расчет параметров и характеристик жрдмт
- 1. Назначение
- 2. Состав
- 3. Основные технические требования
- 4. Номинальные условия работы
- 5. Характеристики ракетного двигателя Статические характеристики жидкостного ракетного двигателя
- 15.1. Дроссельная (расходная) характеристика жрд
- 15.2. Высотная характеристика рд
- 15.2.1. Высотная характеристика двигателя с постоянным соплом
- 15.2.2. Высотная характеристика двухпозиционного (раздвижного) сопла
- 16.1. Неустойчивость процессов в жидкостных ракетных двигателях
- 16.2. Запуск, останов, регулирование и управление жрд
- 6. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.3. Схемные и конструктивные решения ракетных двигателей твердого топлива
- 16.4. Корпуса маршевых рдтт с зарядами
- 17.1. Сопла маршевых рдтт и системы создания боковых усилий
- 17.2. Вспомогательные рдтт