logo
Лекции 1 курс 2 семестр печать

Напівпровідниковий діод. Транзистор. Порівняльна характеристика електричного струму у різних середовищах План

1.Напівпровідниковий діод

2.Транзистор. Використання напівпровідникових приладів

3.Порівняльна характеристика електричного струму у різних середовищах

1.Напівпровідниковий діод

Сила зворотного струму майже не змінюється у разі зміни напруги. Створюючи в одному кристалі (наприклад, германію) р-n перехід вплавленням в одну з його поверхонь домішки індію, можна виготовити напівпровідниковий діод. Щоб позбавитися шкідливих впливів повітря і світла, кристал германію вміщують у герметичний металевий корпус. На схемах діод зображують, як показано на рис. 4.3.16. Діоди використовують для випрямлення струму в радіосхемах. Напівпровідниковий діод має переваги перед електронними двоелектродними лампами: економія енергії для одержання носіїв струму, мініатюрність, висока надійність і тривалий термін дії.

Діод має односторонню провідність - сила прямого струму у разі навіть невеликих напруг значно більша від зворотного струму за такої самої напруги.

Недоліками цих діодів є погіршення їх роботи з підвищенням температури і вологості.

2.Транзистор. Використання напівпровідникових приладів

Напівпровідниковий прилад з двома р-n-переходами називають напівпровідниковим тріодом або транзистором. Для його виготовлення за допомогою відповідних домішок у монокристалі германію або силіцію створюють три ділянки (рис. 4.3.17). Ділянку з провідністю n-типу називають базою (Б). Ця ділянка розділяє ділянки провідності p-типу, які називають емітером (Е) і колектором (К). Таким чином, створюються два p-n-переходи, пропускні напрями яких протилежні. Під'єднання батарею e1 плюсом на емітер Е, а мінусом на базу Б, батарею e2 (її ЕРС значно більша) плюсом до бази (Б), мінусом до колектора К забезпечує прямий напрям в колі "емітер - база" і зворотний в колі "колектор - база".

Поки коло "Е - Б" розімкнено, в колі "Б - К" сила струму дуже мала, оскільки опір напрямленому рухові основних носіїв зарядів (електронів у базі та дірок у колекторі) у зворотному напрямі великий. Як тільки замикається коло "Е - Б", основні носії заряду емітера Е переходять із нього в базу Б, де вони є вже неосновними носіями. Оскільки товщина бази дуже мала і кількість основних носіїв (електронів) у ній невелика, дірки, що потрапили до неї, майже не рекомбінують з електронами бази і проникають у колектор унаслідок дифузії. Правий p-n перехід закритий для основних носіїв заряду бази - електронів, але не для дірок. У колекторі дірки захоплюються електричним полем і замикають коло. Сила струму, що відгалузився в коло емітера з бази, дуже мала, бо площа перерізу бази в горизонтальній площині набагато менша від перерізу у вертикальній площині.

Сила струму в колекторі К, що дорівнює силі струму в емітері Е, змінюється разом зі струмом в емітері. Опір резистора R мало впливає на струм у колекторі, тому його підбирають досить великим. Керуючи струмом емітера за допомогою джерела змінної напруги Uвх, можна змінити напругу Uвих на резисторі R. Якщо опір резистора великий, то зміна напруги на ньому може в десятки тисяч разів перевищувати зміну напруги сигналу в колі емітера. Це свідчить про підсилення напруги. Одночасно і потужність, що виділяється на навантаженні R, значно перевищуватиме потужність, яка витрачається в колі емітера. Відбувається підсилення за потужністю.

У електричних і радіотехнічних колах p-n-p транзистори зображаються, як показано на рис. 4.3.18 а, позначення n-p-n транзисторів - на рис. 4.3.18 б.

Якщо напругу, отриману на резисторі R, знову подати на вхід підсилювача, матимемо пристрій, який генерує електричні коливання. Якщо після одного каскаду підсилення сигналу виявляється ще недостатнім, підсилення повторюють. Та підсилення коливань відбувається за рахунок енергії батареї e2, а транзистор лише керує її роботою.

Використання напівпровідникових приладів знаходить дедалі ширше застосування. За їх допомогою змінний струм перетворюють у постійний; генерують, перетворюють і підсилюють електричні коливання; обробляють інформацію на комп'ютерах і калькуляторах; перетворюють енергію світла в енергію електричного струму (сонячні батареї, фоторезистори); здійснюють дистанційне вимірювання температури, протипожежну сигналізацію (термістори).

Напівпровідникові прилади мають високу економічність, мініатюрність, довговічність, менше "бояться" вібрації.