1.Заломлення електромагнітних хвиль
Наллємо в скляну посудину прямокутної форми воду, підфарбовану спеціальною речовиною, яка, розсіюючи світло, робить його видимим у прозорій воді. Над поверхнею води пустимо деяку кількість диму, частачки якого також розсіюють світло. Якщо тепер спрямуємо вузький пучок світла на поверхню води під певним кутом, то помітимо, що на поверхні води він розділиться на два пучки (мал.4.25).
Один із них буде відбитим від поверхні води відповідно до закону відбивання, а другий — пройде у воду, змінивши напрямок свого поширення.
Явище зміни напрямку поширення фронту електромагнітних хвиль при переході крізь межу двох середовищ називають заломленням.
З'ясуємо, чому на межі двох різнорідних середовищ відбувається заломлення електромагнітних хвиль. Відомо, що кожна точка поверхні, на яку падає електромагнітна хвиля, стає джерелом нової сферичної електромагнітної хвилі внаслідок збудження коливань заряджених частинок речовини. Така хвиля поширюється не тільки як відбита у першому середовищі, а й як заломлена у другому середовищі.
На межі двох прозорих речовин відбувається заломлення електромагнітних хвиль. Для пояснення причин заломлення електромагнітних хвиль на межі двох середовищ скористаємося принципом Гюйгенса. Розглянемо випадок, коли швидкість хвилі певної довжини в першому середовищі більша, ніж у другому: Для такого співвідношення швидкостей друге середовище у фізиці називають оптично густішим. Нехай плоска хвиля падає на поверхню MN розділу двох середовищ під кутом а (мал. 4.26). Фронт цієї хвилі, зображений на малюнку прямою АВ, досягає поверхні MN спочатку в точці А. Через інтервал часу Δt фронт хвилі досягає точки С. Доки точка В фронту хвилі переміщується зі швидкістю v1 до точки С, в точці А з'являється сферична хвиля, фронт якої починає поширюватись у другому середовищі зі швидкістю v2. (Поширення відбитої хвилі у першому середовищі не розглядатимемо.) Оскільки то радіус AD фронту цієї хвилі в речовині буде меншим за відстань, яку пройшла хвиля протягом цього самого інтервалу часу від точки В в напрямку точки С. Отже, Провівши пряму CD, одержимо переріз фронту хвилі площиною малюнка. З побудови видно, що лінія CD не паралельна лінії АВ. Якщо з точок С і D провести перпендикуляри до фронту хвилі, то одержимо промені, які показують хід пучка в другій речовині. З мал. 4.26 видно, що другий пучок наблизився до перпендикуляра, поставленого в точку А (або Q до межі поділу двох середовищ MN.
Заломлення електромагнітної хвилі на межі двох середовищ відбувається тому, що швидкість світла в різних речовинах різна. З'ясуємо, від чого залежить кут заломлення у при переході хвилі з першого середовища у друге. Для цього розглянемо трикутники ABC і ACD. Вони прямокутні зі спільною гіпотенузою АС. Відношення їхніх сторін ВС і AD дорівнюватиме відношенню швидкостей хвилі в кожному середовищі:
Катет ВС лежить навпроти кута ВАС = , тому він дорівнює ВС=ACsin. Катет AD лежить навпроти кута ACD = γ і дорівнює AD = ACsinγ. Врахувавши останні залежності, запишемо співвідношення
Відношення для кожної пари речовин для даної довжини хвилі є суто індивідуальним. Тому його характеризують фізичною величиною, яку називають відносним показником заломлення: Якщо електромагнітна хвиля світла падає на межу поділу вакуум-речовина, то показник заломлення: де с — швидкість світла у вакуумі; v — швидкість світла в даній речовині.
Кут заломлення електромагнітної хвилі залежить від співвідношення швидкостей світла в кожному середовищі.
Закон заломлення
Відношення синуса кута падіння до синуса кута заломлення для двох даних середовищ є величиною сталою. Падаючий і заломлений промені лежать в одній площині з перпендикуляром, опущеним на межу двох середовищ у точку падіння. Відносний показник заломлення . Абсолютний показник заломлення .
Показник заломлення, визначений відносно вакууму, називають абсолютним показником заломлення. Абсолютний показник заломлення є однією з головних оптичних характеристик речовини. Його, як правило, визначають експериментально. Між абсолютним і відносним показниками заломлення є певна залежність, яку можна встановити, скориставшись означеннями цих величин:
Відносний показник заломлення для двох речовин дорівнює відношенню абсолютних показників заломлення кожної з цих речовин. Абсолютний показник заломлення залежить від частоти хвилі. Залежність показника заломлення від частоти електромагнітної хвилі називають дисперсією.
ЗАДАЧІ ДЛЯ САМОСТІЙНОГО РОЗВ'ЯЗУВАННЯ
1. Визначте показник заломлення скла, якщо швидкість світла в ньому 200 000 кмс.
2. На поверхню рідини падає промінь під кутом 25°. Визначте кут заломлення променя, якщо швидкість світла в рідині 2,4 • 105кмс.
3. Показник заломлення речовини 1,63. Який кут заломлення відповідає куту падіння променя 45°?
4. Пучок світла падає з повітря на поверхню рідини під кутом 40°, кут його заломлення дорівнює 24°. Яким буде кут заломлення, якщо пучок падатиме під кутом 80°?
5. У дно річки завглибшки 2 м забито стовп так, що частина його завдовжки 1 м здіймається над водою. Знайдіть довжину тіні стовпа на поверхні води і на дні річки, якщо висота сонця над горизонтом 30°. Показник заломлення води 1,33.
6. Палиця завдовжки 2L зі зламом посередині занурена у воду так, що спостерігач бачить її прямою. Який кут зламу має палиця? Показник заломлення води 1,33.
7. Який кут падіння променя на поверхню кварцового скла, якщо кут між заломленим і відбитим променями становить 120°?
8. Яка швидкість світла у кризі, якщо кут падіння променя дорівнює 61°, а кут заломлення 42°.
9. Швидкість жовтого світла у склі 198 200 кмс, у воді — 225 000 кмс. Визначте показник заломлення скла відносно води.
- Електричний заряд. Закон збереження електричного заряду. Закон Кулона. План
- 2.Закон збереження заряду
- 3.Закон Кулона. Діелектрична проникністість середовища
- Запитання для самоперевірки
- Електричне поле. Напруженість електричного поля. Електричне поле точкового заряду. Принцип суперпозиції полів. План
- 1.Електричне поле нерухомих зарядів
- 4.Принцип суперпозиції (накладання) полів
- Запитання для самоперевірки
- Робота електричного поля під час переміщення електричного заряду. Потенціал і різниця потенціалів. Зв'язок між напругою і напруженістю однорідного електричного поля. План
- 1.Робота електричного поля під час переміщення електричного заряду
- 2.Потенціал
- 4.Еквіпотенціальні поверхні
- Запитання для самоперевірки
- Провідники в електричному полі. Електростатичний захист План
- 1.Провідник в однорідному електростатичному полі
- Запитання для самоперевірки
- Діелектрики в електричному полі. Діелектрична проникність речовин. План
- Запитання для самоперевірки
- Електроємність. Конденсатори. Електроємність плоского конденсатора. З'єднання конденсаторів. Енергія електричного поля. План
- 1.Електроємність
- 2.Конденсатор. Електроємність плоского конденсатора
- 3.З'єднання конденсаторів.
- 4.Енергія електричного поля
- Запитання для самоперевірки
- Електричний струм у металах. Електронна провідність металів. Електричний струм. Умови існування електричного струму. Сила струму. План
- 1.Електричний струм у металах. Електронна провідність металів
- 2.Електричний струм. Сила струму
- 3.Умови існування електричного струму
- Запитання для самоперевірки
- Закон Ома для ділянки кола. Опір провідників. Залежність опору металів від температури. Надпровідність. План
- 2. Залежність опору металів від температури. Надпровідність.
- Запитання для самоперевірки
- Особливості впливу електричного струму на організм людини. Правила роботи при проведенні робіт з електрики План.
- 1.Небезпека електричного струму. Загальна характеристика електричної енергії.
- 3.Фактори, що впливають на наслідки ураження електричним струмом
- 4.Правила роботи при проведенні робіт з електрики
- Послідовне та паралельне з'єднання провідників. План
- 1.Послідовне з'єднання провідників
- 2.Паралельне з'єднання провідників
- Запитання для самоперевірки
- Електрорушійна сила джерела струму. Закон Ома для повного кола. Робота і потужність електричного струму. Закон Джоуля-Ленца. План
- 1.Електрорушійна сила джерела струму. Закон Ома для повного кола
- 2.Робота і потужність електричного струму. Закон Джоуля – Ленца. Коефіцієнт корисної дії джерела
- Запитання для самоперевірки
- Електричний струм у розчинах і розплавах електролітів. Закони електролізу. Застосування електролізу. План
- 2.Закони електролізу. Застосування електролізу
- Запитання для самоперевірки
- Електричний струм у газах. Несамостійний і самостійний розряди. Поняття про плазму. План
- 1.Електричний струм у газах
- 2.Несамостійний і самостійний розряди. Види розрядів
- 3.Поняття про плазму
- Запитання для самоперевірки
- Електричний струм у вакуумі. Термоелектронна емісія. Діод. Електронно-променева трубка. План
- 1.Електричний струм у вакуумі
- 2.Термоелектронна емісія
- 3.Вакуумний діод
- 4.Електронно-променева трубка
- Запитання для самоперевірки
- Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури. Власна та домішкова електропровідність напівпровідників. План
- 1.Електричний струм у напівпровідниках. Власна та домішкова електропро-відність напівпровідників
- 2.Напівпровідників n- і р-типів
- Запитання для самоперевірки
- Напівпровідниковий діод. Транзистор. Порівняльна характеристика електричного струму у різних середовищах План
- 3.Порівняльна характеристика електричного струму у різних середовищах
- Запитання для самоперевірки
- Взаємодія струмів. Магнітне поле. Індукція магнітного поля. Закон Ампера План
- 1.Взаємодія струмів
- 2.Магнітне поле. Силові лінії
- 3.Закон Ампера
- Запитання для самоперевірки
- Магнітні властивості речовин. Магнітна проникність. Ферромагнетики. План
- 1.Магнітні властивості речовин. Магнітна проникність
- 2.Ферромагнетики. Намагнічування феромагнітної речовини
- Запитання для самоперевірки
- 2.Робота при переміщенні провідника і контуру зі струмом у магнітному полі
- 3.Напруженість магнітного поля
- 4.Сила Лоренца.
- Пулюй іван
- 5.Ефект Холла
- Боровик євген станіславович (1915-1966)
- Комар антон пантелеймонович (нар.1904)
- Український іван іванович (1943-1997)
- Запитання для самоперевірки
- Вплив магнітних полів на живі організми
- Ектромагнітна індукція. Магнітний потік. Закон електромагнітної індукції. Напрям індукційного струму. Правила ленца. План
- 1.Електромагнітна індукція
- 2.Досліди фарадея
- 3.Електромагнітна індукція в рухомому провіднику
- 4.Магнітний потік
- 5.Правило ленца
- 6.Закон електромагнітної індукції
- Ерс індукції в рухомих провідниках. Електродинамічний мікрофон План
- 1.Ерс індукції у рухомому провіднику
- 2.Індукційне електричне поле
- 3.Електродинамічний мікрофон
- Самоіндукція. Індуктивність. Енергія магнітного поля струму План
- 1.Самоіндукція
- 2.Енергія магнітного поля провідника зі струмом
- Узагальнення та системетизація знань з теми "електромагнітна індукція"
- Коливальний рух. Вільні коливання. Амплітуда, період, частота. Математичний маятник. Коливання вантажу на пружині План
- 1.Механічні коливання і хвилі
- 2.Гармонічні коливання тягаря на пружині
- 3.Енергія коливального руху
- 4.Вільні коливання
- 5.Математичний маятник
- Вимушені коливання. Резонанс, його використання та усунення в техніці
- Поперечні та поздовжні хвилі. Довжина хвилі. План
- 1.Поширення коливань у пружному середовищі. Хвилі
- Звукові хвилі. Швидкість звуку. Гучність звуку та висота тону. Луна. Інфра- та ультразвуки План
- 1.Звукові й ультразвукові коливання та їх застосування
- 2.Ефект доплера
- Узагальнення та систематизація знань з теми "механічні коливання і хвилі". Екологічні проблеми акустики
- Гармонічні коливання. Період, частота, фаза коливань у контурі. Вільні електромагнітні коливання. Перетворення енергії у коливальному контурі. Власна частота коливань План
- 1.Вільні коливання в коливальному контурі
- 2.Формула томсона
- Автоколивання. Генератор незатухаючих коливань на транзисторі План
- 1.Автоколивання. Маятник годинника
- 2.Генератори незатухаючих електромагнітних коливань. Використання високочастотних струмів
- Вимушені електричні коливання. Змінний електричний струм. Генератор змінного струму. Діючі значення сили струму і напруги. Електричний резонанс План
- 1.Вимушені коливання
- 2.Змінний струм
- 3.Активні й реактивні навантаження в колах змінного струму
- 4.Потужність у колі змінного струму
- 5.Коло змінного струму з індуктивністю і ємністю.Закон ома для повного кола змінного струму. Резонанс
- Трансформатор. Розв’язування задач. Передача електроенергії на відстань та її використання План
- 1.Трансформатор
- 2.Як доцільно передавати електричну енергію на відстань?
- Електромагнітне поле. Електромагнітні хвилі та швидкість їх поширення. Основні властивості електромагнітних хвиль План
- 1.Електромагнітне поле
- 2.Досліди герца
- 3.Утворення електромагнітних хвиль
- Енергія електромагнітної хвилі. Густина потоку випромінювання. Винайдення радіо о.С. Поповим. Принцип радіотелефонного зв’язку План
- 1.Енергія електромагнітної хвилі
- 2.Передача інформації за допомогою електромагнітних хвиль
- 1.Радіолокація
- Розвиток поглядів на природу світла. Швидкість світла. Принцип гюйгенса. Закони відбивання світла План
- 1.Швидкість світла
- 2.Відбивання електромагнітних хвиль. Дзеркала
- Повне внутрішнє відбивання План
- 1.Повне відбивання
- Узагальнююче повторення з теми "геометрична оптика". План
- 1.Заломлення електромагнітних хвиль
- 2.Застосування явища заломлення
- 3.Сферичні лінзи
- Поляризація світла. Дисперсія світла План
- 1.Дисперсія
- 2.Поляризація електромагнітних хвиль
- Електромагнітне випромінювання різних діапазонів довжин хвиль та застосування різних видів випромінювань. Рентгенівські промені. Праці івана пулюя План
- 1.Шкала електромагнітних випромінювань
- 2.Радіохвилі
- 3.Інфрачервоне випромінювання
- 4.Ультрафіолетове випромінювання
- 5.Рентгенівське випромінювання
- Узагальнення та систематизація знань з теми "електромагнітні хвилі"
- Принцип відносності ейнштейна. Швидкість світла у вакуумі як гранична швидкість. Залежність маси від швидкості. Релятивістська динаміка План
- 1.Принцип відносності ейнштейна. Одночасність подій
- 2.Швидкість світла. Просторові та часові властивості фізичного світу
- 3.Закон взаємозв’язку маси та енергії
- Фотоелектричний ефект. Закони фотоефекту. Кванти світла. Рівняння фотоефекту План
- 1.Гіпотеза м.Планка
- 2.Фотоефект. Рівняння фотоефекту
- 3.Ефект комптона
- 4.Практичне застосування фотоефекту
- Фотон. Корпускулярно - хвильовий дуалізм. Хімічна дія світла План
- 1.Світлові кванти. Корпускулярно-хвильовий дуалізм світла
- Досліди резерфорда. Ядерна модель атома. Квантові постулати бора. Поглинання та випромінювання світла атомом План
- 1.Будова атома. Досліди резерфорда
- 3.Оптичні спектри. Поглинання і випромінювання світла атомом
- 4.Спектральний аналіз та його застосування
- Лазер. Створення та застосування квантових генераторів. Узагальнення та систематизація знань з теми "будова атома". План
- 1.Квантові генератори. Лазери та їх застосування
- 2. Узагальнення та систематизація знань з теми "будова атома".
- Склад ядра атома. Ізотопи. Ядерні сили. Енергія зв’язку атомних ядер План
- 1.Склад атомних ядер
- 2.Ядерні сили та енергія зв'язку атомних ядер
- Ядерні реакції. Радіоактивність.Розв’язування задач План
- 1.Ядерні реакції.
- 2.Радіоактивність. Альфа- , бета- , гамма-випромінювання. Закон радіоактивного розпаду
- 3.Методи спостереження і реєстрації іонізуючих випромінювань.
- 4.Радіоактивне випромінювання та його біологічна дія. Дозиметрія. Захист від випромінювання
- 5.Чорнобильська катастрофа та ліквідація її наслідків
- Поділ ядер урану. Ядерний реактор. Термоядерні реакції. Семінар. Проблеми розвитку ядерної енергетики в україні. Екологічні наслідки План
- 1.Поділ ядер урану
- Елементарні частинки та їх властивості. Частинки та античастинки. Взаємні перетворення частинок і квантів електромагнітного випромінювання План
- 1.Елементарні частинки
- 2.Узагальнення і систематизація знань з теми "атом і атомне ядро"
- Список літератури для підготовки