§ 4.3. Спирты
В транспортной энергетике спирты рассматривают как одно из основных альтернативных топлив для ДВС. Практическое значение имеют спирты метиловый (условное наименование «метанол») и этиловый (условное наименовение «этанол»). Эти топлива по своим термохимическим и эксплуатационным показателям наиболее полно удовлетворяют характерным особенностям современных поршневых ДВС. Спирты обладают высоким 04 и низким ЦЧ, вследствие чего их целесообразно использовать в качестве топлива для двигателей с принудительным воспламенением. В табл, 4.13 приведены основные свойства метанола и этанола.
Таблица 4.13
Показатели | Метанол | шел |
Плотность при 20 °С, кг/м | 795 | 789 |
Вязкость при 20 "С, мм /с | 0,55 | 1,76 |
Температура, °С: |
| |
кристаллизации | —98 | — 115 |
кипения | 65 | 78 |
самовоспламенения | 464 | 432 |
Теплоемкость при 20 °С, кДж/(кг *°С) | 2,51 | 2,43 |
Стехиометрическое количество воздуха, (кг воздуха)/(кг топлива) | 6,5 | 9,0 |
Теплота парообразования, кДж/кг | 1100 | 900 |
Теплота сгорания (низшая), кДж/кг | 22 000
| 26 000
|
Октановое число: |
|
|
по моторному методу | 90 | 88 |
по исследовательскому методу | по
| 106
|
Спирты обладают высокой гигроскопичностью (они неограниченно вмешиваются с водой), что оказывает существенное отрицательное илияние на их эксплуатационные свойства. Увеличение концентрации воды повышает плотность, температуры кипения и кристаллизации, теплоемкость и теплопроводность топлива при одновременном ухудшении его энергетических показателей и значительном усилении коррозионной агрессивности (в особенности мо отношению к сплавам, содержащим свинец и алюминии). Метанол вступает в химическую реакцию с водой с выделением водорода. Теплота сгорания спиртов приблизительно в 2 раза меньше, чем нефтяных топлив, поэтому при практически одинаковых энергетических затратах ДВС, работающие на спирте, имеют по сравнению с бензином большие массовые расходы топлива «пропорционально отношению теплот сгорания). Спирты по сравнению с нефтяными топливами характеризуются более устойчивым сгоранием. Благодаря этому расширяется диапазон устойчивого горения на бедных смесях (до а- 1,5— 1,6).
Сгорание спиртов по сравнению с бензинами характеризуется меньшими задержками воспламенения и большими скоростями горения, более низкими температурами и большей полнотой сгорания. Нее это обеспечивает меньший теплоотвод из зоны реакции, пониженную теплонапряженность деталей цилиндропоршневой группы, уменьшение нагарообразования, повышенный индикаторный КПД, уменьшенный удельный расход энергии на единицу мощности и меньшую токсичность отработавших газов по СО, СnНт и оксидам азота. В табл. 4.14 приведены результаты испытаний двигателя i=8, Vh=4,5 л, e=8,9 по европейскому ездовому циклу.
Таблица 4.14
Топливо | Состав отработавших гадов, г/цикл | ||
СО | СнНт | NOх | |
Бензин
| 140 | 6 | 8 |
Метанол | 32 | 5,5 | 0,7 |
Высокое значение теплоты испарения спиртов обусловливает снижение температуры заряда, следовательно, повышение коэффициента наполнения. Сочетание перечисленных факторов позволяет увеличить мощность двигателя при переходе на спирт на 10—15 % (по сравнению с бензином). Использование высоких антидетонационных качеств спиртов позволяет дополнительно увеличить мощность двигателя путем увеличения степени сжатия. Большая теплота испарения спиртов затрудняет пуск двигателя и ухудшает условия внешнего смесеобразования (ухудшается гомогенизация смеси во впускном тракте и увеличивается неравномерность ее распределения по цилиндрам). Для устранения этого недостатка применяют добавку растворимых в спиртах легкокипящих I углеводородов (до 20 % бутана, изопентана, диметилового эфира и др.) интенсивный подогрев впускного тракта и карбюратора, частичную рециркуляцию отработавших газов, а также вводят 1 специальные пусковые системы. Характерной особенностью спиртов I является малое сажеобразование (метанол практически не дает I сажи).
Коррозионная агрессивность спиртов и бензоспиртовых смесей проявляется в воздействии на сталь, алюминий, магний, цинк и сплавы на их основе. В присутствии воды коррозия значительно возрастает. Спирты интенсивно реагируют со свинцом, образуя аморфные соединения, забивающие топливные фильтры и жиклеры. Большинство прокладочных материалов имеет склонность к набуханию при контакте со спиртами.
При работе на спиртах возможен повышенный износ двигателя, что объясняется разрушающим действием спирта на масляную пленку, находящуюся на поверхностях трения (это действие усиливается в присутствии воды). Помимо этого при неполном сгорании этанола образуются органические кислоты, интенсифицирующие коррозионный износ пар трения. Явление повышенного износа наиболее сильно проявляется при низкотемпературных режимах работы двигателя (например, в режиме прогрева).
Токсичность отработавших газов ДВС, работающих на спиртах, характеризуется следующими показателями; концентрация СО при а < 1 соответствует бензиновым двигателям; с увеличением а свыше 0,98—1,0 наблюдается резкое падение с последующим, по мере дальнейшего обеднения смеси, практически полным отсутствием содержания оксида углерода в отработавших газах; концентрация углеводородов в 10—20 раз, а оксидов азота в 1,5—2 раза меньше, чем в бензиновых двигателях на соответственных режимах работы (концентрация СО и СН в двигателях, работающих на этаноле, несколько выше, чем при метаноле).
Использование спиртов и бензоспиртовых смесей на транспортном средстве обусловливает выполнение следующих доработок его конструкции: увеличивается объем топливных баков (при необходимости сохранения заданной величины пробега между заправками топливом); вводятся системы, обеспечинаюшие запуск холодного двигателя; изменяется тарировка топливодозирующих устройств с учетом повышенного массового расхода топлива и заменяются материалы, обладающие пониженной стойкостью к спиртам. Целесообразна также установка свечей зажигания с большим калильным числом и усиление подогрева впускного тракта.
Реальным препятствием для широкого практического использования метанола является его высокая токсичность. Метанол — яд, действующий на нервно-сосудистую систему. Отравления возможны при попадании метанола в пищеварительный тракт и при вдыхании или воздействии жидкости на кожу человека. Предельно допустимая концентрация паров метанола в воздухе 5 мг/м3 (для бензина — 100 мг/м3 ). Попадание в организм свыше 10 мл метанола может окончиться тяжелым отравлением. Смертельная доза 30 мл. При длительных контактах с метанолом возможно хроническое отравление, сопровождающееся нервными расстройствами. Для ограничения связанных с этим опасностей необходима надежная герметизация топливных баков и топливоподающей системы.
Этанол менее токсичен, ПДК паров этанола в воздухе 1 г/м3. Препятствием для массового использования этанола является его наркотическое действие на организм человека.
Проводятся опытно-конструкторские работы по использованию в качестве топлива смеси газов (СО + Н2), получаемых путем термокаталитического разложения метанола в устанавливаемом на автомобиле бортовом реакторе. Эндотермическая реакция разложения СН3ОН 2Н2+ СО — 4000 кДж/кг протекает при температуре 220— 500 °С на катализаторе (платина, палладий, медь, цинк, никель). Теплота сгорания получаемых продуктов на 18—20 % выше, чем у жидкого метанола (с учетом скрытой теплоты его парообразования). Необходимый для протекания реакции внешний подвод теплоты обеспечивается отработавшими газами двигателя. Наиболее сложной задачей в этом случае является разработка катализатора и реактора, обеспечивающих устойчивое разложение метанола в эксплуатационном диапазоне температур отработавших газов и нагрузок двигателя. В качестве паллиативного решения этой задачи рассматривается работа ДВС на смеси жидкого метанола и газа, полученного при разложении метанола.
Получаемый при разложении метанола газ может быть использован в дизелях, работающих по газожидкостному циклу.
- Введение
- Глава 1. Производство топлив и смазочных материалов
- § 1.1. Свойства и состав нефти
- § 1.2. Переработка нефти и нефтепродуктов
- § 1.3. Очистка нефтепродуктов
- Глава 2 общие сведения о топливах
- § 2.1. Классификация топлив
- § 2.2. Состав нефтяных топлив
- § 2.3. Горючая смесь
- § 2.4. Энергетические показатели топлив и горючих смесей
- § 2.5. Альтернативные топлива
- Глава 3. Свойства топлив
- § 3.1. Испаряемость топлив
- § 3.2 Детонационная стойкость топлив
- § 3.4. Теплофизические свойства топлив
- § 3.5. Стабильность топлив
- § 3.6. Влияние топлив на коррозионный износ
- § 3.7. Противоизносные свойства топлив
- § 3.8. Влияние топлива на образование отложений
- § 3.9. Экологические свойства топлив
- Глава 4
- § 4.1. Жидкие нефтяные топлива
- § 4.2. Газообразные углеводородные топлива
- § 4.3. Спирты
- § 4.4. Водород и аммиак
- Глава 5
- § 5.1. Трение и смазка
- § 5.2. Износ
- § 5.3. Классификация смазочных материалов и требования к их свойствам
- § 5.4. Состав и условия работы моторных масел
- § 5.5. Присадки к маслам
- Глава 6. Свойства моторных масел
- § 6.1. Смазочные свойства масел
- § 6.2. Вязкостные и депрессорные свойства масел
- § 6.3. Стабильность масел
- § 6.4. Влияние масла на образование отложений
- § 6.5. Антикоррозионные и консервационные свойства масел
- § 6.6. Противопенные и деэмульсионные свойства масел
- § 6.7. Обкаточные свойства масел
- Глава 7. Применение моторных масел в двигателях внутреннего сгорания
- § 7.1. Ассортимент товарных моторных масел
- § 7.2. Синтетические моторные масла
- § 7.3. Выбор моторного масла
- § 7.4. Старение, угар и смена моторных масел
- Глава 8 твердые и пластичные смазки
- § 8.1. Твердые слоистые смазки. Мягкие металлы. Полимерные и композиционные материалы
- § 8.2. Общие сведения о пластичных смазках
- § 8.3. Свойства пластичных смазок
- § 8.4. Ассортимент пластичных смазок
- Глава 9 охлаждающие жидкости
- §9.1. Вода
- § 9.2. Антифризы
- § 9.3. Высококипящие охлаждающие жидкости
- § 3.2. Детонационная стойкость топлив