§ 2.5. Альтернативные топлива
В связи с большим значением альтернативных топлив для транспортной энергетики будущего целесообразно более подробное рассмотрение некоторых видов этих топлив и методов их получения.
По производственным и эксплуатационным показателям альтернативные топлива можно разделять на две основные группы.
К первой группе относятся топлива, достаточно близкие к нефтяным по происхождению, физико-химическим и эксплуатационным свойствам. Такие топлива получают переработкой углеродсодержащих природных и промышленных веществ (угля, битуминозных песков, горючих нефтяных сланцев, природного и промышленного горючих газов и т.п.) — из альтернативных энергоресурсов. Получаемые в результате переработки жидкие продукты в некоторых работах называют синтетической нефтью. Характерной особенностью топлив, получаемых из нее, является то, что их использование не требует значительных изменений в конструкции или доработок ДВС, рассчитанных на топлива из природной нефти.
Ко второй группе относятся топлива, существенно отличающиеся как по физико-химическим, так и по эксплуатационным свойствам от нефтяных. К этой группе относят спирты, нефтяной и природный газы, водород, аммиак и некоторые другие энергоносители. К альтернативным условно относят также газоконденсатные топлива, являющиеся продуктом нефтяного происхождения, но не получаемые из нефти в процессе ее переработки.
Альтернативные энергоносители имеют большие потенциальные возможности, освоение которых практически еще только начинается (например, при сегодняшних потребностях энергии, заключенной в нефтяных сланцах и битуминозных песках, хватило бы человечеству более чем на 1000 лет).
Уголь. Установленные запасы угля на земном шаре в десятки раз превышают запасы нефти и газа и оцениваются более чем в 14 трлн.т. Около 25 % разведанных запасов угля в СССР сосредоточено в Сибири, в Канско-Ачинском бассейне.
Энергетической программой предусмотрена крупномасштабная комплексная переработка углей Канско-Ачинского месторождения с получением компонентов моторных топлив, аммиака, метанола и водорода. При решении проблемы использования угля в качестве энергоисточника для транспортных двигателей основная задача состоит в создании экономически рентабельных способов его переработки в жидкое топливо, сопоставимое по своим качественным показателям с нефтью. Различают два современных способа превращения угля в жидкое углеводородное топливо (синтетическую нефть): путем сжижения угольной массы и с предварительной газификацией угля.
Физическая основа первого способа основана на том, что агрегатное состояние углеводородных соединений зависит от количества в молекуле атомов водорода, приходящихся на один атом углерода,— чем их больше, тем при более низких температурах углеводороды становятся жидкими. Соответственно техническая реализация этого способа заключается в насыщении углеводородных компонентов угля водородом — в деструктивном гидрировании. В этом процессе измельченную угольную массу в смеси с жидкостью, выделяемой из конечного продукта гидрирования, подвергают действию высоких температур и давлений в атмосфере водорода в присутствии катализатора. При этом молекулярные связи исходных тяжелых углеводородов разрываются (происходит их деструкция) с образованием молекул с меньшей молярной массой и насыщением свободных молекулярных связей водородом. После вторичной переработки и очистки получают жидкие топлива, соответствующие по качеству современным требованиям к нефтяным топливам.
Первая установка по производству синтетической нефти из угля путем его гидрирования была создана в 1923 г. Во время второй мировой войны в Германии работало 12 заводов общей мощностью 2 млн. т бензина, 800 тыс. т дизельного топлива и 35 тыс. т смазочных материалов в год. Процесс проводился в громоздких установках при высоких давлениях и температурах (70 МПа, 180 С).
Работы по совершенствованию методов гидрирования угля ведутся в СССР в Институте горючих ископаемых. Разработанная в СССР технология дает до 45 % жидкого горючего от массы израсходованного угля при соотношении бензин : дизельное топливо от 1 : 3 до 1 : 5.
Другой промышленный способ получения синтетической нефти основан на окислении угля в присутствии воды с последующим гидрированием полученных продуктов. Схему протекания реакций можно представить следующим образом:
1. Исходный продукт окисляется водяным паром С + Н2О СО + Н2.
2. Образовавшийся оксид углерода и водород очищают и смешивают с водородом до получения смеси, содержащей 1 часть СО на 2,0 — 2,5 части Н2.
3. Смесь газов подвергается обработке (t = 170 - 210 °С; Р - 1,0 МПа) на кобальтовом катализаторе. Получают жидкие и газообразные вещества. Жидкие продукты представляют собой одну из форм синтетической нефти (выход нефти до 650 кг из 1т угля). Из газообразных продуктов выделяют пропан-бутановую фракцию, используемую для изготовления сжиженных горючих газов. Этим способом синтетическая нефть может быть получена практически из любых углеродсодержащих веществ. Например, при эндотермической реакции воды с метаном
СН4 + Н2О СО + ЗН2
получают газ с соотношением СО и Н2, близким к оптимальному, и далее по описанной выше схеме.
Большие ресурсы оксида углерода для получения синтетической нефти заключены в попутных газах металлургических производств (доменного, кислородно-конверторного, ферросплавного и др.). Расчеты показывают, что использование только этих ресурсов достаточно для удовлетворения до 20 % потребности страны в автомобильном бензине.
Однако массовое использование топлив, полученных из угля, станет экономически целесообразным лишь после завершения всех работ по созданию высококачественных катализаторов, промышленной технологии и строительства соответствующих предприятий.
В нашей стране разработан один из наиболее экологически чистых способов производства углеводородов. По этому способу из атмосферы выделяют углекислый газ, который разлагают на оксид углерода и кислород. Для этого требуются большие затраты энергии, которую можно выработать, например, в атомных реакторах. Затем оксид углерода соединяют с водородом и получают группы углеводородов, входящих в состав синтетической нефти (рис. 2.7).
Для получения синтетической нефти и горючих газов из угля и твердых углеводородных веществ применяют также процессы полукоксования и коксования.
Полукоксование (или низкотемпературное коксование) заключается в нагреве сырья в печах без доступа воздуха (для угля температура нагрева 500 — 600 °С). В результате полукоксования получают: полукокс — твердое топливо, из которого удалены значительная часть летучих компонентов и влага; первичную смолу (смолу полукоксования) — жидкие продукты, сконденсированные путем охлаждения выделяющихся летучих веществ; газы полукоксования — газообразные продукты, несконденсировавшиеся при охлаждении летучих веществ. Эти газы состоят в основном из метана, в меньшем количестве они содержат непредельные углеводороды, примеси СО, СО2, H2S и др.
Коксование. При увеличении температуры выше температуры полукоксования (для угля до 750— 1200°С) расщепление сырья углубляется, в результат чего уменьшается количество выделяющихся смол и увеличивается количество газа.
Горючие газы. Основными компонентами горючих газов являются низкокипящие углеводороды (см. табл. 4.7). Сырьевой базой для получения этих веществ служит природный газ, нефтяные газы, a также газы, получаемые при нефтепереработке, доменные газы и биогаз.
Наибольшее значение для промышленности ТиС имеет приходный газ, который получают из газовых или и газоконденсатных месторождений. В залежах нефти также присутствует природный газ.
В зависимости от месторождения природный газ содержит от 92 до 98 % метана (CH4) с примесями других, в том числе и более тяжелых углеводородов, диоксида углерода, сероводорода (содержание которого в газе некоторых месторождений достигает 20 %), гелия (получение гелия из природного газа имеет промышленное значение).
После относительно несложной очистки природный газ может быть непосредственно использован в качестве моторного топлива. Освоены технологии массового получения из природного газа жидких моторных топлив, метилового спирта (распространенное промышленное название — метанол), водорода и других ценных химических продуктов. Мировые запасы метана в природных газах оценивают в 250 трлн. м3.
В качестве источника горючего газа на основе метана может рассматриваться биогаз, представляющий собой смесь метана (до 80 %) с углекислым и некоторыми другими газами. Биогаз получают биотехнологическими методами практически из любых органических веществ (в том числе отходов) с помощью термофильных, метано-образующих бактерий. Процесс преобразования, называемый биоконверсией или анаэробной ферментацией, проходит в специальных емкостях — метатенках, в которые подается теплота, вода и органические отходы (рис. 2.8). В результате получают биогаз (0,3 — 0,7 м3 из 1 кг сухого органического вещества), содержащий до 70% метана, и шлам, являющийся высокоэффективным азотно-фосфорным удобрением (1 т такого шлама эквиваленты 2 —4 т промышленных удобрений). Биогаз очищают от примесей с целью увеличения содержания метана и используют в качестве моторного топлива наравне с природным газом. В ряде городов действуют промышленные установки по производству биогаза из промышленных отходов и жидких коммунальных стоков.
Перспективные ресурсы метана, намного превосходящие запасы природного газа, сосредоточены в метановом гидрате — веществе, имеющем консистенцию льда и состоящем из молекул метана, заключенных в трехмерной решетке молекул воды. Это вещество стабильно при достаточно высоких давлениях и минимальных положительных температурах, поэтому его месторождения сосредоточены на дне морей и океанов. Под залежами гидратов расположен газообразный метан. По предварительным оценкам такие метановые залежи содержат около 1 млн. км газа. Другим перспективным источником метана является газ угольных месторождений (рудничный газ). Только в Донецком и Карагандинском каменноугольных месторождениях запасы метана оценивают в 80 км .
Все углеводородные горючие газы (как природный, так и промышленный и биогаз) могут быть использованы для получения синтетической нефти.
Распространенными процессами, используемыми для переработки газообразных углеводородов в жидкие, являются ал копирование и полимеризация. Реакция алкилирования заключается в присоединении олефинового углеводорода к парафиновому или ароматическому с образованием насыщенной молекулы большей молярной массы. В результате алкилирования получают алкилат, являющийся высококачественным компонентом бензинов.
Реакция полимеризации заключается в соединении двух или большего числа одинаковых молекул. В реакции полимеризации способны участвовать только непредельные углеводороды. В природном горючем газе такие углеводороды отсутствуют, поэтому сырьем для полимеризации являются промышленные горючие газы, богатые непредельными углеводородами. Полимеризация производится при температуре 180 — 200°С и давлении 20 — 30 МПа в присутствии катализатора.
Большие потенциальные энергетические ресурсы заключены в горючих сланцах и битуминозных песках. В 1 т сланцев содержатся 80— 100 кг органических веществ (встречаются месторождения, содержащие до 300 кг таких веществ).
Жидкое синтетическое топливо из сланцев получают путем их нагрева без доступа воздуха при температурах 500 — 550 °С. Выделяющаяся при этом сланцевая смола подвергается перегонке для отделения легких фракций, которые после гидрирования и очистки используют в качестве добавок к нефтяным топливам.
Огромные запасы нефтепродуктов в виде природного битума — вещества, состоящего из высокомолекулярных, преимущественно нафтеновых углеводородов, содержатся в битуминозных песках. Например, месторождения битуминозного песка в Азербайджане содержат до 150 кг нефти на 1 м3 песка.
Широкое использование промышленных методом получения синтетической нефти сдерживается относительно (по сравнению с нефтью) высокой стоимостью процессов переработки. Объем производства этих продуктов будет возрастать по мере постоянно проходящего изменения соотношения между производственными затратами и стоимостью природной нефти.
Реальной и практически осуществляемой заменой нефтяных топлив являются спирты — метиловый (метанол) и этиловый (этанол). Наибольшее внимание уделяется метанолу. Это объясняется большими масштабами его производства (мировое производство метанола достигло 180 млн. т и продолжает увеличиваться в перспективе до 200 млн. т к 2000 г.), освоенной крупномасштабной технологией (производительность отдельных агрегатов достигает 100 тыс. т в год) и разнообразием сырьевых источников. В качестве сырья для получения метанола могут быть использованы тяжелые нефтяные остатки (гудрон, битум), уголь, природный газ и пр. Метанол может быть использован в качестве основного топлива для ДВС, как добавка к нефтяному топливу и как сырье для производства синтетического высокооктанового бензина. Из метанола получают эффективную высокоактивную добавку к бензину: метил-трет-бутиловый эфир (МТБЭ).
Этанол по своим эксплуатационным характеристикам близок к метанолу, но производство его отличается большей энергоемкостью, что обусловливает более высокую его стоимость. В промышленности этанол получают путем гидратации этилена или биотехнологической переработкой органических продуктов. Возможно также получение этанола из метанола путем реакции его с оксидом углерода на катализаторе (СН3ОН + СО + 2Н2 -+ СН3СН2ОН + Н2О).
Биотехнологические методы переработки на этанол растительных веществ представляют особый интерес, так как позволяют получать альтернативные топлива из восстанавливаемых природных органических ресурсов — биомассы растений, побочных продуктов сельскохозяйственного производства и т.п.
Помимо отказа от использования природных горючих ископаемых такое решение дает возможность приблизиться к безотходной технологии, что имеет большое экологическое значение.
Наиболее распространенным источником сырья для биотехнологического получения этанола являются отходы от переработки растительных масс. Для удовлетворения растущего спроса на этанол культивируют специальные сельскохозяйственные растения. Основным препятствием в использовании такого способа являются ограничения по растительному сырью — посевные площади необходимы для удовлетворения продовольственных потребностей людей.
Как основной перспективный энергоноситель будущего рассматривают водород — экологически чистое топливо, обладающее неограниченными сырьевыми ресурсами. Наиболее распространенный современный промышленный способ получения водорода основан на частичном окислении метана и его конверсии с водяным паром:
2СН4 + О2 2СО + 4Н2;
СН4 + Н2О СО + ЗН2.
Метан является ценным промышленным сырьем, поэтому предложены способы получения водорода из воды. К таким способам относят электролитическое (электролиз) и термическое (термолиз) разложение воды. Недостатком электролиза является относительно низкий КПД процесса. Несмотря на это, в дальнейшем роль электролиза возрастет в связи с удешевлением энергии АЭС и увеличением КПД электролизеров. Получение водорода с помощью электролиза нашло промышленное применение в ряде стран, обладающих дешевой гидроэнергией (Норвегия, Канада).
Прямой термолиз (разложение под действием высокой температуры) воды неприемлем из-за высоких температур, при которых протекает реакция (3000 — 3500 °С). Разработаны имеющие практическое значение методы многоступенчатого термолиза с использованием промежуточных окислительно-восстановительных реакций, например двухступенчатый цикл термолиза воды. В первой ступени при относительно низкой температуре проходит реакция взаимодействия металла с водой. Продукты реакции — свободный водород и оксид металла. Во второй ступени при температурах (200 — 1300 °С) проходит восстановление оксида. Теплота для осуществления такого цикла может быть получена от атомного реактора. Подсчитано, что термоядерный реактор тепловой мощностью 10 млн. кВт при работе по такому циклу даст 1 млн.т водорода в год.
К преимуществам использования водорода в качестве энергоносителя относится также возможность аккумулирования больших его количеств в естественных и искусственных подземных резервуарах (выработанные месторождения нефти и газа, горные выработки, соляные каверны и пр.), что важно для согласования режимов выработки и потребления энергии. Водород можно транспортировать по трубопроводам.
Приближенные расчеты показывают, что капитальные и эксплуатационные расходы на транспортировку единицы энергии в виде водорода, благодаря его малой плотности и вязкости, сопоставимы с расходами по транспортировке природного паза и для расстояний свыше 1500 км примерно вдвое ниже, чем на передачу электроэнергии по воздушным линиям. В ФРГ и США действуют водородные трубопроводы протяженностью в несколько сотен километров. Дополнительное преимущество такого решения заключено и в том, что АЭС вырабатывают энергию непрерывно, при практически постоянном режиме, их регулирование или отключение невыгодно, а потребление электроэнергии переменно по времени суток, дням недели и погодным условиям. Необходимо аккумулировать образующуюся в этих случаях избыточную энергию. Возможное решение - использование этой энергии для производства промежуточных энергоносителей, например метанола, водорода, которые могут быть использованы и в качестве топлива для ДВС.
Контрольные вопросы
I. Почему в качестве топлива для ДВС не используют пиротехнические составы (например, порох)? 2. Для каких топлив угол наклона кривой фракционной разгонки равен 90°? 3. Как связан концентрационный диапазон воспламеняемости горючей смеси с топливной экономичностью двигателя? 4. Почему использование газообразных топлив увеличивает долговечность цилиндро-поршневой группы? 5. Как нужно изменить рабочий процесс поршневого двигателя, чтобы можно было полезно использовать разность между высшей и низшей теплотами сгорания топлива? 6. Теплота сгорания этанола меньше, чем бензина (см. табл. 2.1), однако иногда этанол используют в качестве топлива на спортивных автомобилях. Почему?
- Введение
- Глава 1. Производство топлив и смазочных материалов
- § 1.1. Свойства и состав нефти
- § 1.2. Переработка нефти и нефтепродуктов
- § 1.3. Очистка нефтепродуктов
- Глава 2 общие сведения о топливах
- § 2.1. Классификация топлив
- § 2.2. Состав нефтяных топлив
- § 2.3. Горючая смесь
- § 2.4. Энергетические показатели топлив и горючих смесей
- § 2.5. Альтернативные топлива
- Глава 3. Свойства топлив
- § 3.1. Испаряемость топлив
- § 3.2 Детонационная стойкость топлив
- § 3.4. Теплофизические свойства топлив
- § 3.5. Стабильность топлив
- § 3.6. Влияние топлив на коррозионный износ
- § 3.7. Противоизносные свойства топлив
- § 3.8. Влияние топлива на образование отложений
- § 3.9. Экологические свойства топлив
- Глава 4
- § 4.1. Жидкие нефтяные топлива
- § 4.2. Газообразные углеводородные топлива
- § 4.3. Спирты
- § 4.4. Водород и аммиак
- Глава 5
- § 5.1. Трение и смазка
- § 5.2. Износ
- § 5.3. Классификация смазочных материалов и требования к их свойствам
- § 5.4. Состав и условия работы моторных масел
- § 5.5. Присадки к маслам
- Глава 6. Свойства моторных масел
- § 6.1. Смазочные свойства масел
- § 6.2. Вязкостные и депрессорные свойства масел
- § 6.3. Стабильность масел
- § 6.4. Влияние масла на образование отложений
- § 6.5. Антикоррозионные и консервационные свойства масел
- § 6.6. Противопенные и деэмульсионные свойства масел
- § 6.7. Обкаточные свойства масел
- Глава 7. Применение моторных масел в двигателях внутреннего сгорания
- § 7.1. Ассортимент товарных моторных масел
- § 7.2. Синтетические моторные масла
- § 7.3. Выбор моторного масла
- § 7.4. Старение, угар и смена моторных масел
- Глава 8 твердые и пластичные смазки
- § 8.1. Твердые слоистые смазки. Мягкие металлы. Полимерные и композиционные материалы
- § 8.2. Общие сведения о пластичных смазках
- § 8.3. Свойства пластичных смазок
- § 8.4. Ассортимент пластичных смазок
- Глава 9 охлаждающие жидкости
- §9.1. Вода
- § 9.2. Антифризы
- § 9.3. Высококипящие охлаждающие жидкости
- § 3.2. Детонационная стойкость топлив