1.4. Характеристика системы передачи электрической энергии
Основу системы передачи электрической энергии от электрических станций, ее производящих, до крупных районов электропотребления или распределительных узлов ЭЭС составляют развитые сети электропередач или отдельные электропередачи внутрисистемного и межсистемного значения (системообразующие сети) и питающие сети напряжением 220 кВ и выше. Их появление вызвано необходимостью размещения крупных ТЭС и АЭС за пределами жилых зон, а также возможностью выработки части ЭЭ гидроэлектростанциями, расположенными на относительно удаленном расстоянии от городов. Внутрисистемные и межсистемные магистральные линии электропередачи, включая дальние (протяженные) ЛЭП, объединяющие на совместную (параллельную) работу электростанции и наиболее крупные подстанции (районы электропотребления), составляют системообразующую сеть. Назначение такой сети — формирование ЭЭС и одновременно выполнение функции передачи, транзита электрической энергии.
Одним из основных требований, предъявляемых к таким передающим и связующим сетям, является обеспечение надежности и устойчивости их работы, т. е. обеспечение ее работоспособности во всех возможных состояниях (режимах) — нормальных, ремонтных, аварийных и послеаварийных. Решение этой задачи в значительной мере возлагается на большой комплекс автоматических устройств: управления, релейной защиты, режимной и противоаварийной автоматики. Совокупность магистральных и системообразующих (передающих) электрических сетей и устройств автоматического регулирования образуют систему передачи электрической энергии.
Приведем краткую характеристику такой системы по ряду показателей, к которым в первую очередь относятся величины передаваемой мощности, номинального напряжения, функциональное назначение и дальность электропередачи, конфигурация (топология) сети.
Системообразующая сеть, являющаяся основной сетью энергосистем, предназначена для передачи больших потоков мощности (от сотен МВт до нескольких ГВт) отдаленным потребителям (расстояние до 1000 км и более) и выполняется в основном магистральными линиями электропередачи на переменном токе. Межсистемные линии электропередачи сооружают обычно на напряжение более высокое, чем напряжение внутрисистемных линий соединяемых систем, и включают трансформаторные подстанции по концам. Межсистемные передачи ЭЭ переменным током осуществляются преимущественно на напряжении 500 и 750 кВ. Напряжение 500 кВ используется для системообразующих сетей в энергосистемах со шкалой номинальных напряжений сетей 110—220—500—1150 кВ и напряжение 750 кВ в ОЭС со шкалой 150—330—750 кВ, в которой в качестве следующей ступени возможно напряжение 1800 кВ.
Сети этих напряжений служат для выдачи мощности крупных электростанций, создания межсистемных связей и питания нагрузочных узлов 500/220, 500/110, 330/110 (150) кВ и узлов внутрисистемных связей 1150/500, 750/330 кВ. Линии электропередачи 330 кВ, а в некоторых ЭЭС — линии 220 кВ, используются для внутрисистемных связей: выдачи мощности и связи крупных электростанций, для питания и объединения центров электроснабжения 330/110 (150), 220/110 систем распределения электроэнергии. В мощных концентрированных ЭЭС с развитой сетью 500 кВ сети 220 кВ выполняют, как правило, распределительные функции.
Линии электропередачи, передающие потоки равными мощности группы генераторов или соизмеримыми с установленной мощностью энергосистем, относятся к сильным связям. При пропускной способности, не превышающей 10—15 % от установленной мощности меньшей из объединяемых энергосистем, связь между ними характеризуется как слабая. По этим связям практически проводят границу между отдельными ЭЭС.
Если одна из энергосистем постоянно располагает избыточной по балансу мощностью и энергией, стоимость которой ниже, чем в другой энергосистеме, то межсистемная ЛЭП работает с неизменным направлением потока мощности. Линию электропередачи с переменным направлением потока называют реверсивной (маневренной). Ее роль состоит главным образом во взаимопомощи между соседними сравнительно мощными системами. Различие между магистралями и реверсивными связями часто очень неопределенное.
Необходимо отметить также условность деления системы передачи и распределения ЭЭ на основные электрические сети, т. е. протяженные (дальние) электропередачи, системообразующие сети и системы распределения ЭЭ по их номинальному напряжению. По мере развития основных сетей (роста нагрузок и присоединения понижающих подстанций, появления новых генерирующих источников и охвата территории электрическими системами) они все в большей мере выполняют функции распределения электроэнергии. Это означает, что сети, выполняющие функции передающих, системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно «передают» им эти функции, превращаясь в распределительные [6].
Номинальное напряжение линий электропередачи зависит от передаваемой мощности, количества цепей и расстояния (дальности), на которое передается электроэнергия (табл. 1.1). Выбор номинальных напряжений выполняют на этапе проектирования систем передачи ЭЭ (см. главу. 12), и здесь этот вопрос не рассматривается. В данном случае необходимо отметить, что чем больше передаваемая мощность и протяженность линии, тем выше по техническим и экономическим причинам должно быть номинальное напряжение электропередачи. На современном этапе развития ЭЭС ориентировочная передаваемая мощность и длина линии электропередачи в зависимости от класса напряжения характеризуется данными, приведенными в табл. 1.2 [3]. .
Таблица 1.2
Передаваемая мощность и дальность передачи
Напряже- | Количество проводов | Передаваемая | Длина линии | ||
ние ли- | в фазах и наиболее | мощность, МВт | электропередачи,км | ||
нии, кВ | применяемые |
|
|
|
|
|
|
|
| ||
| площади сечений, мм2 | нату- | при плотно- | предельная | средняя между |
|
| ральная | сти тока 1,1 | при КПД, | соседними |
|
|
| А/мм" | равном 0,90 | подстанциями |
220 | 240—400 | 135 | 90—150 | 400 | 100 |
330 | 2x240—2x400 | 360 | 270—450 | 700 | 130 |
500 | ЗхЗЗО—3x500 | 900 | 770—1300 | 1200 | 280 |
750 | 5x300—5x400 | 2100 | 1500—2000 | 2200 | 300 |
1150 | 8x300—8x500 | 5200 | 4000—6000 | 3000 |
|
Передача мощности от удаленных электростанций на первых этапах развития межснстемной связи выполняется в виде неразветвленной электропередачи напряжением (330) 500-1150 кВ (рис. 1.4). Мощные КЭС или ГЭС имеют блочную схему. К каждому трансформатору присоединяют от одного до трех генераторов, отдающих энергию на шины 500—1150 кВ. Далее энергия передается по длинной линии, через понижающую подстанцию в приемную систему, часть нагрузки которой обеспечивается собственными генерирующими станциями (рис. 1.4).
Рис. 1.4. Неразветвленная схема передачи электроэнергии
Если на станции несколько блоков и связующая линия многоцепная, то электропередачи могут выполняться на основе блочной или связанной схем. В блочной схеме (рис. 1.5) дальняя передача мощности осуществляется по отдельным поперечно не связанным электропередачам (блокам) на общую группу шин (подстанций) приемной системы, соединенных между собой связями 110—220 кВ.
Рис. 1.5. Блочная схема передачи электроэнергии
Эти связи и станции приемной системы должны удовлетворять потребность мощности в случае выхода из строя какого-либо блока. При отключении цепи (блока) авария локализуется на одной станции, однако приемная система полностью лишается соответствующей части мощности передающей станции. В связанной схеме (рис. 1.6), обеспечивающей большую надежность электроснабжения, многоцепная дальняя ЛЭП имеет вдоль своей трассы несколько соединений — переключательных пунктов (ПП) — между отдельными цепями, делящими длинную линию на короткие участки (250—350 км). Сооружение ПП сопровождается возрастанием количества применяемых дорогостоящих выключателей. Отключение отдельной линии участка сети между переключательными пунктами незначительно увеличивает суммарное сопротивление, что позволяет сохранить передачу заданной мощности в приемную систему без существенного снижения возможности по передаче мощности или пропускной способности электропередачи.
Под пропускной способностью электропередачи понимается наибольшая активная мощность трех фаз электропередачи, которую можно передать в длительном установившемся режиме с учетом режимно-технических ограничений [3]. Наибольшая передаваемая активная мощность (предел) электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приемной частей ЭЭС, связанных данной электропередачей с номинальным напряжением UНOM:
(1.1)
и допустимой мощностью по нагреву проводов линии с допустимым током Iдоп:
где Е и U — ЭДС генераторов передающей станции и напряжение приемной системы; Xz и cos — результирующее (суммарное) индуктивное сопротивление и коэффициент мощности электропередачи.
Из практики эксплуатации ЭЭС следует, что пропускная способность электропередач 500—750 кВ обычно определяется фактором статической устойчивости, для электропередач 220—330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву.
Предельную передаваемую мощность линии можно сопоставить с ее натуральной мощностью. Приняв неизменным и равным номинальному напряжение по концам линии, перепишем приближенное выражение (1.1) в виде:
где Р„„ — натуральная мощность линии без потерь; a — коэффициент изменения фазы волны напряжения (тока); L — длина линии.
Характерные данные о пропускной способности линий электропередачи приведены в табл. 1.3.
Обеспечение необходимой пропускной способности электропередачи при удовлетворительных экономических показателях представляет наибольшую техническую трудность. Для обеспечения и повышения пропускной способности системообразующих электропередач по условию устойчивости параллельной работы генераторов станций применяются следующие мероприятия и устройства [3, 7].
На дальних ЛЭП используют наиболее высокие из освоенных номинальных напряжений: 500, 750 кВ. В ближайшем будущем будет широко применяться напряжение 1150 кВ. При более высоком напряжении, как следует из принципиальных выражений (1.1) и (1.3), увеличивается предельная мощность электропередачи; наряду с этим снижаются потери мощности и энергии в активном сопротивлении линии. Одновременно возрастает стоимость ВЛ и оборудования подстанций, потери энергии на корону и емкостный ток линии.
Таблица 1.3 Характеристика пропускной способности линий электропередачи
Uном, кВ | Длина линии, км | Число и площадь сечения проводов, мм | Натуральная мощность МВт | Пропускная способность | |||
по устойчивости | по нагреву | ||||||
МВт | в долях Р™ | МВт | в долях | ||||
220 330 500 750 1150 | 150—250 200—300 300—400 400—500 400—500 | 1x300 2x300 ЗхЗОО 5x300 8x300 | 120 350 900 2100 5300 | 350 800 1350 2500 4500 | 2,9 2,3 1,5 1,2 0 85 | 280 760 1740 4600 11000 | 2,3 2,2 1,9 2,1 2,1 |
Снижение суммарного реактивного сопротивления электропередачи, включающего сопротивление генераторов, так же повышает предел мощности по статической устойчивости. При снижении реактивного сопротивления уменьшается потеря напряжения, но возрастает величина тока короткого замыкания, для отключения которого необходимы более мощные и дорогие выключатели. Суммарное реактивное сопротивление уменьшают за счет применения на удаленной станции генераторов с пониженной величиной синхронного сопротивления и трансформаторов на повышающей подстанции, имеющей сниженное напряжение короткого замыкания и сопротивление. На понижающей подстанции в конце электропередачи устанавливают автотрансформаторы, сопротивление которых меньше, чем у трансформаторов. Расщепление фазы на несколько проводов и совершенствование конструкций расщепленных фаз и конструкций опор линий снижают индуктивность и индуктивное сопротивление линий (примерно на 25—35 %), повышают ее натуральную мощность и критическое напряжение короны. При этом усложняется конструкция линий и увеличивается ее стоимость. Возрастание емкости линии при расщеплении вызывает нежелательное увеличение емкостного тока и соответствующей ему мощности. Данные о количестве проводов в фазах линий приведены в табл. 1.3. На ВЛ 220 кВ в редких случаях фаза состоит из двух проводов.
Дальнейшее увеличение предела передаваемой мощности достигается с помощью специальных мер по изменению (компенсации) параметров линий, которые в этом случае именуются компенсированными. Снижение индуктивного сопротивления достигается за счет последовательного включения в линию конденсаторных установок продольной компенсации (УПК), которые повышают стоимость ЛЭП и увеличивают токи короткого замыкания.
Большой емкостный ток дальних линий при сниженной нагрузке вызывает дополнительные потери активной мощности и энергии, нежелательное или недопустимое распределение напряжения в пунктах линии, а также снижение реактивной нагрузки, ЭДС и устойчивости генераторов удаленной станции. Поэтому емкостный ток и соответствующую проводимость линии компенсируют включением на шины высшего напряжения удаленной электростанции и в переключательных пунктах линии установок (реакторов) поперечной компенсации (РПК). При нагрузках, близких к натуральным, РПК отключают. По размерам и стоимости РПК близки к трансформаторам соответствующего напряжения и мощности и потребляют электроэнергию. Капитальные вложения в ЛЭП увеличиваются также за счет применения дополнительных выключателей для РПК.
Установка устройств продольной и поперечной компенсации по воздействию на режим электропередачи соответствует уменьшению ее длины по сравнению с некомпенсированной электропередачей. При определенных параметрах и расположении УПК эквивалентное продольное сопротивление линий становится активным. Емкостный ток линии возможно полностью компенсировать посредством РПК. По эквивалентным реактивным параметрам такая компенсированная линия имеет нулевую длину. Электрическая энергия передается электромагнитными волнами, распространяющимися вдоль проводов со скоростью, близкой к скорости в 300-10 км/с, т. е. за 0,02 с, равной длительности периода при частоте 50 Гц, электромагнитная волна проходит расстояние 6000 км. Линия длиной 3000 км по условию устойчивости обладает повышенной пропускной способностью и называется полуволновой. За счет включения управляемых реактивных элементов (конденсаторов, реакторов) линии, длина которых отлична от 3000км, придаются свойства, характерные для некомпенсированной полуволновой линии. Настройка на полуволну может оказаться целесообразной при длине линии 1500-2000км.
На рис.1.7 изображена упрощенная схема компенсированной ЛЭП 500кВ повышенной пропускной способности.
Рис. 1.7. Принципиальная схема компенсированной электропередачи
По длинной компенсированной линии при максимальной нагрузке экономически нецелесообразно передавать реактивную мощность. Для ее регулирования на приемной подстанции и в некоторых случаях на промежуточных подстанциях или ПП устанавливают источники реактивной мощности (компенсирующие устройства) — синхронные, статические тиристорные компенсаторы.
Указанные мероприятия по повышению пропускной способности электропередачи являются достаточно дорогими. Опыт показал, что при возникновении новых промышленных районов более целесообразным является сооружение электропередачи с промежуточными подстанциями, включенными вдоль нее. Подстанции могут совмещаться с переключательными пунктами линии или создаваться вновь (рис. 1.8, а). Такая электропередача обладает большей устойчивостью, не требует установки реакторов и т. п., стоимость ЛЭП снижается.
На рис. 1.8 изображены упрощенные схемы электропередачи 500 кВ с включенными вдоль линии промежуточными подстанциями ПС1—ПСЗ. Для повышения устойчивости электропередачи в линию включают последовательно конденсаторы (УПК) (схема рис. 1.8, а) или компенсаторы (синхронные или статические) на промежуточных подстанциях (рис. 1.8, б).
Наряду с отмеченным, применяют устройства автоматического регулирования: автоматическое регулирование возбуждения генераторов и синхронных компенсаторов, быстродействующее регулирование мощности турбин, регулирование напряжения по концам электропередачи, быстродействующие выключатели и релейную защиту и др., что также способствует повышению устойчивости и пропускной способности электропередачи.
Рассмотренные схемы линий электропередачи (рис.1.4-1.8) позволяют доставить электроэнергию потребителям от двух генерирующих источников и называются электропередачами с двухсторонним питанием. По мере развития передающей сети в промежуточных пунктах магистральной сети наряду с понижающими подстанциями подключается отдельная электропередача, имеющая генерирующие источники, с отбором или выдачей мощности (рис. 1.9). В итоге формируется узловая система с тремя центрами питания и более высокой устойчивостью и пропускной способностью. В дальнейшем магистральные системообразующие сети, присоединенные к двум-трем центрам питания, усложняются и преобразуются в замкнутые многоконтурные передающие сети с сосредоточенными нагрузками (рис. 1.10). Замкнутые сети обеспечивают наибольшую надежность, поскольку авария (отключение) на каком-либо участке сети имеет последствия (например, ограничение потребляемой мощности) только для потребителей, непосредственно подключенных к этому участку.
Рис. 1.8. Принципиальная схема дальней электропередачи переменного тока
500 кВ с промежуточными подстанциями: а — схема с применением УПК;
б — схема со статическими или синхронными компенсаторами
В системах передачи электроэнергии с сосредоточенными нагрузками непрерывность электроснабжения не может быть нарушена отдельной аварией, т.к. электроснабжение подстанций ПС1— ПС4 (центров питания распределительных сетей 6—220 кВ) осуществляется по двум и более линиям от нескольких независимых источников. Однако в замкнутых сетях более сложная, чем в разомкнутых релейная защита и автоматика.
Внутрисистемные передачи электроэнергии, осуществляемые магистральными одно-двухцепными воздушными линиями 220—330 кВ, обеспечивают связь отдельно расположенных электростанций и центров питания 6—220 кВ распределительных сетей.
Характеристика систем распределения электроэнергии приводится ниже.
Рис. 1.9. Узловая схема сети электропередач 330—750 кВ с тремя центрами питания
Рис. 1.10. Сложнозамкнутая системообразующая сеть 330—750 кВ с центрами питания распределительной сети 6-220кВ
- А. А. Герасименко, в. Т. Федин передача и распредеаение электрической энергии Учебное пособие
- Isbn 5-222-08485-х (Феникс)
- Глава 1. Общая характеристика систем передачи и распределения электрической энергии
- Глава 9. Методы расчета и анализа потерь электрической энергии
- Глава 10. Основы регулирования режимов систем передачи и распределения электрической энергии
- Глава 11. Основы построения схем систем передачи и распределения электрической энергии
- Глава 12. Выбор основных проектных решений
- Предисловие
- Глава 13 посвящена описанию путей оптимизации параметров и режимов протяженных электропередач и распределительных электрических сетей.
- Глава 1. Общая характеристика систем передачи и распределения электрической энергии
- 1.1. Основные понятия, термины и определения.
- 1.2. Характеристика передачи электроэнергии переменным и постоянным током.
- 1.3. Характеристика устройств автоматики и управления в системах передачи и распределения электроэнергии
- 1.4. Характеристика системы передачи электрической энергии
- 1.5. Характеристика систем распределения электрической энергии
- 1.6. Система передачи и распределения электрической энергии (пример)
- Глава 2. Расчет и характеристика параметров схем замещения воздушных и кабельных линий электропередач
- Глава 3. Параметры и схемы замещения трансформаторов и автотрансформаторов
- 3.4. Автотрансформаторы
- 3.5. Трансформаторы с расщепленными обмотками
- Примеры решения задач
- Глава 4. Моделирование и учет электрических нагрузок
- 4.2.2. Годовые графики нагрузок
- Глава 5. Режимные показатели участка электрической сети
- Глава 6. Расчет и анализ установившихся режимов разомкнутых электрических сетей
- 6.1. Расчет режима линии электропередачи
- 6.2. Анализ режима холостого хода линии электропередачи
- 6.3. Расчет установившегося режима разомкнутой электрической сети
- Примеры решения задач задача 6.1
- Глава 7. Расчет установившихся режимов простых замкнутых электрических сетей
- Глава 8. Основы расчета установившихся режимов электрических сетей на эвм
- 8.1. Математическая постановка задачи и общая характеристика методов решения
- 8.1.1. Математическая постановка задачи
- 8.2. Моделирование и методы решения уун
- 8.6. Сходимость, существование и неоднозначность решения уравнений установившегося режима
- Глава 9. Методы расчета и анализа потерь электрической энергии
- 9.2. Метод характерных суточных режимов
- 9.3. Метод средних нагрузок
- 9.4. Метод среднеквадратичных параметров режима
- 9.5. Метод времени наибольших потерь
- 9.7. Метод эквивалентного сопротивления
- 9.9. Расчет потерь электроэнергии в электрических сетях до 1000 в
- Примеры решения задач
- Глава 10. Основы регулирования режимов систем передачи и распределения электрической энергии
- 10.1. Задачи регулирования режимов
- 11.2. Принципы формирования схем протяженных электропередач системообразующих электрических сетей
- 11.5. Схемы городских систем распределения электрической энергии
- 11.7. Схемы электрических сетей до 1000 в
- Вопросы для самопроверки
- Глава 12. Выбор основных проектных решений
- 12.1. Предварительные замечания
- 12.3. Критерии сравнительной технико-экономической эффективности
- 12.4. Выбор варианта развития электрической сети с учетом надежности электроснабжения и требований экологии
- 12.5. Выбор конфигурации и номинального напряжения электрической сети
- 12.6. Выбор проводников линий электропередачи по условиям экономичности
- 12.7. Выбор проводников линий электропередачи по допустимой потере напряжения
- 12.8. Выбор проводников линий электропередачи по условию нагревания
- 12.9. Учет технических ограничений при выборе проводов воздушных линий и жил кабелей
- 12.10. Пути повышения пропускной способности линий электропередач и электрических сетей
- Вопросы для самопроверки
- Воздушные и кабельные линии
- Трансформаторы и автотрансформаторы
- Средние значения продолжительности использования максимума нагрузки в промышленности т.1б
- Конденсаторы для повышения коэффициента мощности электроустановок
- 665074, Г. Иркутск, ул. Игошина, 2