2.3.1. Электропроводность
Важнейшим свойством плазмы является способность переносить заряженные частицы под действием электрического поля. При наложении электрического поля возникают силы, заставляющие электроны дрейфовать - двигаться вдоль силовых линий поля; на хаотическое тепловое движение электронов накладывается их упорядоченное движение со скоростью дрейфа. Пользуясь законами классической физики, можно оценить ее порядок по сравнению со скоростью теплового движения.
Электрический ток создается направленным потоком электронов. В простейшем случае при неизменной силе тока имеет место равновесие между силой, с которой действует на электроны электрическое поле, и силой торможения, обусловленной столкновениями между электронами и ионами. Сила торможения равна среднему значению импульса, теряемого электроном при столкновении с ионами.
Полагаем, что движение электрона как частицы с массой mе и зарядом е под действием поля напряженностью ¯Е и ускоряющей силы е¯Е происходит в течение времени τе = Λ / ve, где ve - средняя квадратичная скорость электрона (скорость теплового движения, так как скоростью дрейфа пренебрегаем вследствие ее сравнительной малости), а Λ - средняя длина свободного пробега электрона. При движении с ускорением е¯ Е/me за время τе электрон разгоняется до скорости дрейфа
(2.30)
Плотность тока у в плазме равна сумме электрических зарядов, пересекающих единичную площадку за 1 с:
(2.31)
Подставляя в (2.31) значение ve из (2.30), получаем выражение закона Ома для плазмы
(2.32)
Здесь σ - удельная электропроводность плазмы (См/м, Ом-1 • м-1 ):
(2.33)
Величину
(2.34)
называют подвижностью носителя тока (электрона), а уравнение (2.34) известно как уравнение Ланжевена. Входящая в уравнение (2.34) величина τе характеризует среднее время пробега электронов по отношению к столкновениям, в результате которых тормозится электронный поток, поэтому средняя частота столкновений электрона
(2.35)
Столкновения электронов между собой не учитываются, так как они не приводят к торможению электронного потока. При изучении представляют интерес два крайних случая электропроводности плазмы: а) полностью ионизованная плазма при степени ионизации χ ≈ 1, па ≈ 0; б) слабо ионизованная плазма при χ ‹‹ 1, na ≈ ni ≈ ne (при однозарядных ионах).
Удельная электропроводность полностью ионизованной плазмы, состоящей из однозарядных ионов, определяется по Л. Спитцеру (Qea = 0, τе= τеi , пе = ni z, z - заряд ионов):
(2.36)
Где Δ= 1,24 ∙ 107(Tе3/nе)1/2 (кулоновский логарифм ln Δ = 4...11).
Оказывается, что в этом случае удельная электропроводность σ почти не зависит от концентрации электронов пе, так как с ростом пе уменьшается время пробега τеi. При одной и той же температуре σ тем больше, чем меньше заряд ионов z; σ растет пропорционально Те3/2, т. е. весьма быстро. Например, при Те = 15 • 106К водородная плазма имеет такую же удельную электропроводность, как обыкновенная медь при комнатной температуре:
σ ≈ 6 ∙ 107См/м.
Для слабоионизованной плазмы торможение электронов происходит главным образом вследствие столкновений с нейтральными атомами и молекулами.
В этих случаях Qei мало, тогда τе = Δ/v = τеa = 1/(nav¯Qea). Найдем удельную электропроводность согласно уравнению (2.33):
(2.37)
Черта над произведением ¯vQea¯ означает, что берется среднее значение этого произведения с учетом распределения электронов по скоростям и зависимости Qea от ve. Из формулы (2.37) видно, что удельная электропроводность слабо ионизованной плазмы пропорциональна степени ионизации ne /na. Поэтому σ должна быть мала вследствие недостатка в носителях тока. Она в десятки тысяч раз меньше электропроводности меди. Удельная электропроводность слабоионизованной плазмы с ростом температуры газа быстро нарастает на участке, соответствующем росту концентрации электронов (рис. 2.14).
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом