logo
ТСП 11

3.1.3. Взаимодействие электронного пучка с веществом

При падении электронного пучка на обрабатываемую поверх­ность кинетическая энергия электронов в результате их взаимо­действия с атомами вещества обрабатываемой поверхности пре­вращается в другие виды энергии.

Максимальное значение плотности мощности q2m электронно­го пучка в зоне его воздействия на вещество может достигать 107 ...108 Вт/см , что позволяет проводить размерную обработку материалов путем их локального испарения в месте воздействия пучка на изделие. По мере уменьшения q2m (это сравнительно просто можно осуществить расфокусировкой пучка) возможно проведение термических процессов (плавки, сварки, нагрева в ва­кууме), а также нетермических процессов - стерилизации, поли­меризации и т. п.

Достигая обрабатываемой поверхности, электроны пучка внед­ряются в вещество, испытывая торможение и проходя при этом некоторый путь. Длина этого пути, изученная Шонландом, опре­деляется по формуле

(3.9)

где δ - глубина проникания электрона в вещество, см; U - ускоряющее напряжение, В; р - плотность вещества, г/см3 .

Реальная глубина проникания электрона в вещество в соответ­ствии с формулой (3.9) обычно не превышает нескольких десятков микрометров, но ею нельзя пренебрегать при учете взаимодейст­вия электронов с веществом, особенно при больших значениях плотности мощности в электронном пучке. Проходя сквозь веще­ство, электроны взаимодействуют с кристаллической структурой или отдельными частицами вещества. При этом вследствие обмена энергией увеличивается амплитуда колебаний составляющих ве­щество частиц, изменяются параметры его кристаллической ре­шетки, повышается температура вещества. Достаточно большая энергия, сообщенная электронами атомам, может привести даже к разрыву связей между отдельными атомами.

При торможении электрона в веществе кроме выделения теп­ловой энергии происходит еще ряд различных явлений. Суммар­ное выделение энергии при электронной бомбардировке поверх­ности расходуется на следующие основные процессы:

  1. собственно нагрев поверхности, используемый в технологи­ческих целях;

  2. тормозное рентгеновское излучение, возникающее при элек­тронной бомбардировке материалов;

3)вторичная электронная эмиссия, отражение электронов и термоэлектронная эмиссия с обрабатываемой поверхности;

4)побочные явления, сопровождающиеся потерями энергии.

Следует отметить, что электронный пучок имеет максималь­ный коэффициент поглощения энергии в обрабатываемом вещест­ве, достигающий 80...95 % полной мощности источника и являет­ся одним из самых эффективных источников энергии для сварки.

Нагрев обрабатываемого материала электронным пучком осу­ществляется в результате выделения тепловой энергии в поверх­ностных слоях вещества и дальнейшей передачи теплоты в его внутренние слои. Высокая интенсивность ввода энергии в вещест­во при электронно-лучевой обработке приводит к развитию значи­тельных поверхностных температур, уровень которых может пре­вышать точку кипения даже самых тугоплавких материалов.