2.6.3. Анодная область
В сварочных дуговых процессах явления в анодной области Дуги играют исключительно важную роль, поскольку от них во многом зависят доля передаваемой аноду энергии дуги и соответственно характер нагрева и плавления основного металла. За исключением специальных случаев, например сварка угольной дугой, анод не эмитирует положительных ионов. Поэтому анодный ток - чисто электронный и j =je.
Одним из важнейших интегральных параметров, характеризующих функционирование анодной области дуги, принято считать анодное падение потенциала Uа, которое может быть как положительным, так и отрицательным. Его значение определяется в основном энергией, потребляемой для образования положительных ионов в анодной области, и в большинстве случаев оно меньше катодного падения потенциала UK. Для Ме-дуг Ua составляет 2...3 В. Д.М. Рабкиным получены значения Ua = 2,5 ± 0,5 В, не зависящие от тока, материала анода и состава атмосферы дуги.
По данным многочисленных наблюдений различают два основных режима горения дуги на аноде: а) с контрагированным (сжатым) анодным пятном и б) с диффузной (распределенной по большой поверхности) зоной контакта дуги с анодом. Форма зоны контакта плазмы с поверхностью анода обусловлена действием ряда факторов, таких как ток дуги, давление, род плазмообразующего газа, скорость движения плазмы и т. д. Так, при низком давлении (р ≤ 104 Па) переход от распределенной дуги к контрагированной наблюдается с увеличением тока, когда превышается некоторое его значение, называемое критическим. В то же время при атмосферном давлении и выше переход от распределенной дуги к контрагированной наблюдается при уменьшении тока ниже некоторого порогового значения.
При диффузной зоне контакта дуги с анодом (диффузной привязке) плотность тока на аноде либо сравнима, либо меньше плотности тока в столбе дуги. В этом режиме не требуется увеличения тока в анодной области дуги, даже, наоборот, иногда может возникнуть необходимость в уменьшении электронного тока. В данном случае анод под действием потока электронов может принимать отрицательный заряд и начинает тормозить избыточные электроны из столба дуги. Поэтому в режиме с диффузной привязкой Ua принимает значения от отрицательного до положительного, обеспечивающие вытягивание необходимого потока электронов из плазмы.
При контрагированной дуге плотность тока на аноде заметно выше, чем в плазме столба дуги. В этом случае происходит как бы ионизационное усиление тока в анодном слое, что возможно при дополнительном вкладе энергии в поток электронов. Поскольку электроны получают энергию от электрического поля, можно считать, что ионизационное усиление тока происходит при положительном анодном падении потенциала Ua. Так, для дуги с неплавящимся катодом в среде аргона при переходе в контрагирован-ную форму дуги Ua возрастает до 7 В. Для контрагированных дуг в молекулярных газах (азоте и воздухе) Ua может достигать 12 В. Создание условий для перехода от распределенной дуги к контрагированной может рассматриваться в качестве одного из способов повышения удельных тепловых потоков на поверхность анода, т. е. повышения проплавляющей способности при дуговой сварке.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом