2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
Данное выше определение плазмы является неточным. Дело в том, что не всякий ионизованный газ представляет собой плазму. Удовлетворительным определением плазмы является следующее: плазма - это квазинейтральный газ, состоящий из заряженных и нейтральных частиц, который проявляет коллективные свойства. Понятия «квазинейтральный» и «коллективные свойства» требуют разъяснения.
Характерной особенностью плазмы является ее макроскопическая нейтральность, поддерживаемая взаимной компенсацией объемных зарядов положительных ионов и электронов. Однако такая компенсация имеет место лишь в среднем - в достаточно больших объемах и за достаточно большие промежутки времени. Поэтому говорят, что плазма - квазинейтральная среда. Размер области пространства и промежуток времени, в пределах которых может нарушаться компенсация объемного заряда, называют соответственно пространственным и временным масштабами разделения зарядов.
Условие квазинейтральности обусловливает связь между концентрациями электронов и ионов. В случае когда в плазме имеются однократно ионизованные ионы только одного сорта, это условие записывается в виде nе = ni, так как заряд электрона равен заряду положительного иона со знаком минус, т. е. е= - еi.
Оценим сначала из простых физических соображений временной масштаб разделения зарядов. Представим себе, что какой-либо электрон плазмы отклонился от своего первоначального Положения равновесия. При этом возникает возвращающая сила, равная средней кулоновской силе взаимодействия частиц, т. е.
- среднее расстояние между частицами. В результате электрон начнет колебаться около положения равновесия с частотой
где величина ωLe называется ленгмюровской или плазменной частотой и является чрезвычайно важной характеристикой плазмы. Естественно, можно принять за временной масштаб разделения зарядов величину, обратную плазменной частоте, т. е.
(2.7)
поскольку за промежутки времени t » τ частицы совершат много колебаний около положения равновесия и плазма в целом будет вести себя как квазинейтральная система.
Рассмотрим теперь пространственный масштаб разделения зарядов. Из простых физических соображений ясно, что он должен быть равен расстоянию, на которое может сместиться возмущение плотности заряженных частиц вследствие их теплового движения за время, равное периоду плазменных колебаний. Определенный таким образом пространственный масштаб разделения зарядов для плазмы носит название электронного дебаевского радиуса экранирования rDe и играет в физике плазмы фундаментальную роль. Он выражается в метрах и вычисляется по формуле
(2.8)
где ε0 = 8,85 • 10-12 Кл/(В • м) - электрическая постоянная, Те и nе -
соответственно температура, К, и концентрация, м3 , электронов.
Итак, для квазинейтральности плазмы необходимо, чтобы ее характерные размеры L значительно превосходили дебаевский радиус экранирования:
(2.9)
Только при условии (2.9) систему заряженных частиц можно считать плазмой, т. е. материальной средой с новыми качественными свойствами. В противном случае получается простая совокупность отдельных заряженных частиц, к исследованию которой применима электродинамика вакуума.
Пример 2.1. Определить дебаевский радиус экранирования для высокоионизованной плазмы сварочной дуги при условиях: р = 105 Па, Т = 104К, nе =1024м-3.
Решение. Подставив числовые данные в формулу (2.8), получим
Для данного случая только в кубике газа со стороной менее
√2 • 6,9 х 10-9 м ≈ 11 нм можно определить разность концентраций ионов и электронов. Поэтому можно сделать вывод: в сварочной дуге при атмосферном давлении плазма квазинейтральна.
Дебаевское экранирование является статистическим понятием и имеет место только в том случае, когда в заряженном облаке находится достаточно много частиц. Очевидно, что если облако состоит только из одной или двух заряженных частиц, то дебаевское экранирование не применимо. Используя выражение (2.8), можно вычислить число частиц NDe в «дебаевской сфере»:
(2.10)
Чтобы плазма имела коллективные свойства, помимо неравенства (2.9) должно выполняться условие
(2.11)
Специфические особенности плазмы могут проявляться только тогда, когда распределение заряженных частиц в ней становится неоднородным и возникают макроскопические электромагнитные поля. Электромагнитные поля в плазме могут создаваться и внешними источниками, однако существенно, что эти поля влияют на характер распределения и движение заряженных частиц в плазме, индуцируя в ней заряды и токи, которые, в свою очередь, сами создают электромагнитные поля, изменяя полное электромагнитное поле в системе. Происходит так называемое самосогласованное воздействие заряженных частиц и электромагнитного поля друг на друга. Собственно, в этом и проявляются коллективные свойства плазмы.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом