2.1.2. Возбуждение дуги и ее зоны
Возбуждение дуги возможно в следующих случаях:
при переходе из устойчивого маломощного газового разряда в дуговой (см. рис. 2.1);
в процессе создания высокоионизованного потока пара, перекрывающего межэлектродное пространство (в большинстве случаев с помощью третьего электрода);
3)при электрическом пробое газового или вакуумного промежутка между электродами, обеспечивающем переход из неустойчивого искрового разряда в устойчивый разряд (осуществляется подачей импульса высокой частоты и высокого напряжения);
4) при размыкании контактов или разрыве перемычки между электродами в цепи с током.
При сварке плавящимся электродом обычно используют дугу размыкания, а при сварке неплавящимся вольфрамовым электродом - высокочастотный вспомогательный разряд от осциллятора. Импульс высокого напряжения получают обычно с помощью конденсатора. При сварке угольным (графитовым) электродом дугу возбуждают, используя чаще всего третий электрод.
В газовых промежутках (при атмосферном давлении) с резко неоднородным электрическим полем напряжение возбуждения самостоятельного дугового разряда не совпадает с напряжением пробоя, которому соответствует перекрытие газового промежутка плазменным каналом с падающей вольт-амперной характеристикой. В этих условиях сопротивление плазменного канала, перекрывающего межэлектродный промежуток разряда, становится меньше, чем сопротивление внешней цепи, включая внутреннее сопротивление источника напряжения. Поэтому правильно считать, что при достаточной мощности источника напряжения искровой пробой завершается образованием плазменного канала дуги.
В самостоятельном дуговом разряде начиная с токов выше нескольких ампер наблюдается неравномерное распределение потенциала и температуры между электродами (рис. 2.2, 2.3).
Скачки потенциала в катодной и анодной областях обусловлены скоплениями пространственного заряда и повышенным сопротивлением этих областей по сравнению со столбом дуги.
Неравномерным оказывается и распределение температуры по длине столба дуги. Высокие значения температуры в столбе дуги (плазменном канале) снижаются до существенно меньших значений на поверхности электродов. Все это приводит к тому, что условия в приэлектродных областях заметно отличаются от условий в плазменном канале (шнуре), и, следовательно, при изучении процессов в дуге следует выделить три зоны: катодную1, анодную 2 и столб дуги 3 (рис. 2.4).
В газовом промежутке между двумя электродами заряженные частицы могут возникнуть во всех трех зонах, но главным образом они появляются в результате процессов эмиссии на катоде и объемной ионизации в столбе дуги. В связи с ограниченностью эмиссии электронов столб дуги (как и любой проводник) вдали от катода сохраняет по отношению к нему положительный потенциал, поэтому часто его называют положительным столбом. В то же время не следует забывать, что плазма столба обычно квазинейтральна.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом