Глава 1. Физические основы и классификация сварочных процессов
Виды элементарных связей в твердых телах и монолитных соединениях
Монолитность сварных соединений. В технике широко используют различные виды разъемных и неразъемных соединений. Неразъемные соединения, в свою очередь, могут быть монолитными, т. е. сплошными, и немонолитными (например, заклепочные соединения). Монолитные соединения получают сваркой, пайкой или склеиванием.
Сварку и пайку используют для соединения между собой твердых тел: металлов и неметаллов. Монолитность сварных соединений обеспечивается появлением атомно-молекулярных связей между частицами соединяемых твердых тел.
Твердое тело представляет собой комплекс атомов, находящихся во взаимодействии. Физико-химические и прочностные свойства твердого тела зависят от типа связи между атомами и характера их взаимного расположения, поэтому прежде чем рассматривать природу сварного соединения, следует вспомнить некоторые сведения из физики твердого тела.
Элементарные связи в твердых телах. Характер и значение энергии элементарных связей в твердых телах зависят от природы вещества и типа кристаллической решетки твердого тела.
Наличие ряда кристаллических структур, разнообразие физических свойств (сжимаемость, точка плавления, электрические, оптические свойства и др.), а также различные химические свойства указывают на существование разных типов связи атомов в твердых телах. Силы межатомного взаимодействия имеют электрическое происхождение.
В первом приближении можно считать, что в образовании межатомных (химических) связей принимают участие в основном электроны валентных оболочек. Их вклад в энергию образования тела из атомов намного больше, чем вклад внутренних электронов. Химические связи по своей природе электромагнитные и действуют на расстояниях порядка 10-10м.
Принято считать, что между частицами твердого тела кроме электромагнитного взаимодействия существуют взаимодействия еще трех типов: ядерные, или сильные, действующие на расстояниях менее 10 м (следовательно, на расстоянии 0,1 нм их можно не учитывать); слабые, обусловливающие (3-распад (они слабее электромагнитных в 10 раз); гравитационные, которые в 10 раз слабее электромагнитных.
Понятие химической связи относится к взаимодействию атомов с энергией -10... 100 кДж. Столь широкий интервал энергий может быть реализован различными взаимодействиями, которые традиционно классифицируют как типы химической связи: ковалентная, ионная, металлическая и водородная. Эта классификация не является четко определенной. Ковалентная связь представляет собой универсальный тип химической связи. Ионную связь можно рассматривать как частный (предельный) случай ковалентной связи между атомами, резко отличающимися друг от друга по своей электроотрицательности. Понятия металлической и водородной связей отражают скорее специфику химических объектов, нежели действующих сил. Наиболее типичны ковалентная и ионная химические связи.
Ковалентная связь означает химическую связь между атомами, осуществляемую общими электронами. Она может образоваться взаимодействием или спариванием валентных электронов. Если атомы одинаковы, например в молекулах водорода Н2, щелочных металлов в газообразном состоянии Li2, К2, Na2, галогенов Cl2, Вг2, азота N2, - то связь неполярная, при взаимодействии разных атомов, например НСl, - связь полярная. В предельном случае, когда электроны связи полностью смещены к одному из ядер, имеет место ионная связь. В природе сравнительно немного тел с ковалентными связями. Однако они имеют большое практическое значение благодаря высокой температуре плавления и твердости (например, алмаз С, кремний Si, германий Ge и карбид кремния SiC - карборунд). Главной чертой ковалентных связей является наличие обобщенных электронов и четкая пространственная ориентация.
При изучении сварочных процессов важно иметь в виду, что прочные ковалентные связи устанавливаются не только в кристаллах металлов, но и при соединении металлов с металлоидами, оксидами металлов, а также полупроводниками или интерметаллидами, обладающими полупроводниковыми свойствами.
Ионная, или гетерополярная связь, типична для молекул и кристаллов, образованных из разных ионов (анионов и катионов). Типичным представителем ионных кристаллов является поваренная соль NaCl. Образование катиона - это результат потери атомом электрона. Мерой прочности связи электрона в атоме может служить потенциал ионизации атома. Образование анионов происходит в результате присоединения электрона к атому. Мерой способности к такому присоединению служит так называемое сродство к электрону. Особенностью ионной связи является отсутствие насыщаемости и пространственной направленности. В природе очень много тел, имеющих ионные связи. Однако они имеют незначительное применение в машиностроении, потому что у них нет свойств, позволяющих использовать их как конструкционный материал.
Представления о чисто ковалентной и чисто ионной связи в значительной степени идеализированы. Обычно встречаются промежуточные случаи. Если при ионной связи один атом отдает электрон другому, а при ковалентной - каждый электрон принадлежит в равной степени обоим связанным атомам, то в промежуточных случаях возможны связи с любым «процентом ионности».
Водородная связь, называемая также протонной связью, представляет собой связь специфического типа, которая может быть как внутримолекулярной связью, так и межмолекулярной. Возникновение связей такого типа индуцируется ядром водорода (или протоном), которое благодаря своему малому размеру, может проникать в глубь электронной оболочки, обладающей сильной электроотрицательностью. Водородная связь занимает промежуточное положение между атомной и ионной связями и часто встречается в органических и некоторых неорганических соединениях. Ассоциации молекул воды, спирта, кислот и др. определяются водородными связями.
Металлические связи характерны для металлов. Металлическое тело можно считать одной макромолекулой, потому что металлические связи имеют место не только между двумя или несколькими атомами металла. Высокие значения тепло- и электропроводности металлов непосредственно связаны с их атомной структурой. Атомы металлов имеют мало электронов во внешней оболочке, и эти электроны сравнительно слабо связаны с остальной частью атома («остовом» атома). Слабая связь внешних электронов приводит к тому, что металлы имеют небольшие потенциалы ионизации. Металлическая связь ненаправленная, так как каждый атом стремится притянуть к себе как можно больше соседних атомов. Следствием этого является большая компактность кристаллических структур металлов. Энергия металлической связи несколько меньше, чем энергия ковалентной связи, поэтому большинство металлов по сравнению с ковалентными кристаллами имеют более низкие модуль упругости, температуры плавления и испарения, но более высокий температурный коэффициент линейного расширения.
Поскольку в металле существует как бы облако обобществленных электронов, металлическая связь допускает большее смещение атомов, чем другие типы связей. Этим обусловливается высокая пластичность металлических кристаллов по сравнению с ковалентными или ионными кристаллами.
Между молекулами имеется специфическое взаимодействие, вызываемое межмолекулярными силами, или силами Ван-дер-Ваальса. Механизм такой связи присущ всем твердым телам. Силы Ван-дер-Ваальса действуют между молекулами газообразных и жидких веществ, а также между молекулами в кристаллических решетках. Однако эта связь имеет существенное значение только при отсутствии других связей. Силы Ван-дер-Ваальса сильнее действуют в кристаллах и жидкостях, слабее в газах, потому что они тем больше, чем ближе друг к другу находятся молекулы.
Все описанные выше типы связей и межмолекулярных взаимодействий могут быть рассмотрены как силы сцепления, или когезионные силы, в результате действия которых из отдельных атомов и молекул образуются тела в разном агрегатном состоянии и с разными свойствами. Чем больше энергия связи, тем сильнее когезия в теле и тем труднее его измельчить, расплавить или привести в газообразное состояние (табл. 1.1).
Все рассмотренные связи в кристаллах редко проявляются в чистом виде. Как правило, сочетания различных связей существуют одновременно. Следует также отметить, что поверхности твердых тел в атмосферных условиях обычно инертны, так как валентности их атомов насыщены связью с атомами окружающей среды. Примером такого насыщения может служить окисление веществ в атмосфере. На поверхности могут также протекать процессы типа физической адсорбции, обусловленные силами Ван-дер-Ваальса.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом