2.2.1. Основные параметры плазмы
Как известно, плазма состоит из заряженных и нейтральных частиц. Положительно заряженными частицами плазмы являются положительные ионы (газовая плазма) и дырки (плазма твердого тела), а отрицательно заряженными частицами - электроны и отрицательные ионы.
Состав нейтрального компонента плазмы может быть достаточно сложным: помимо атомов и молекул, находящихся в нормальном состоянии, в плазме в гораздо большем количестве могут присутствовать атомы и молекулы в различных возбужденных состояниях. Но поскольку плазма - это ионизованный газ, для ее описания используются те же понятия, что и для обычного газа.
Введем основные параметры плазмы, исходя из простых молекулярно-кинетических представлений. Прежде всего необходимо знать концентрацию (плотность) частиц разного сорта nα м-3 (индекс α означает сорт частиц). Далее все величины, относящиеся к электронам плазмы, будем обозначать с индексом е, к ионам - с индексом i, а к нейтральным частицам - с индексом α. Если в плазме присутствуют ионы нескольких сортов, следует задавать отдельно концентрацию ионов каждого сорта. Состав плазмы удобно также характеризовать безразмерным параметром - отношением концентрации электронов к сумме концентраций нейтральных частиц и
электронов, илистепенью ионизацииПо степени ионизации плазму обычно подразделяют на слабо ионизованную (χ << 10-3 ) и полностью ионизованную (χ → 1), т. е. плазму, состоящую только из заряженных частиц.
Частицы, образующие плазму, находятся в состоянии хаотического теплового движения. Для характеристики этого движения вводят понятие температуры плазмы в целом Т или отдельных ее компонентов - частиц сорта α - Тα. Температура плазмы вводится в предположении, что плазма в целом находится в состоянии термодинамического равновесия, а функции распределения частиц всех сортов по скоростям v являются максвелловскими с одной и той же температурой T; в этом случае плазма называется изотермической. Гораздо чаще в плазме имеется частичное термодинамическое равновесие, когда отдельные ее компоненты имеют максвелловские распределения по скоростям с различными температурами. Такая плазма является неизотермической.
В частности, распределение электронов по модулям скоростей описывается выражением:
(2.1)
где k = 1,38 • 10-23 Дж/К - постоянная Больцмана; Те - температура электронов, К; v - скорость хаотического теплового движения электронов, м/с.
График функции fe(v) приведен на рис. 2.6. Аналогичный вид имеют функции распределения по скоростям и для других частиц. Максимум функции fe(v) определяет наиболее вероятную скорость
Средняя тепловая скорость электронов
(2.3)
Для средней квадратичной скорости получаем
(2.4)
В случае максвелловской функции распределения (2.1) температура Те характеризует среднюю кинетическую энергию теплового движения электрона ε ־:
(2.5)
Поскольку температура и средняя кинетическая энергия теплового движения частиц столь тесно взаимосвязаны, в физике плазмы принято выражать температуру в единицах энергии, например в электронвольтах. Температура ТэВ, выраженная в электронвольтах, связана с соответствующей температурой Т, выраженной в кельвинах, соотношением
Рассчитаем, какая температура Т (в кельвинах) соответствует температуре ТэВ = 1 эВ:
Отметим, что средняя кинетическая энергия частицы ε ־ равна
3/2 ТэВ, а не ТэВ.
Часто пользуются понятием температуры плазмы и в тех случаях, когда функция распределения частиц (сорта α) отличается от максвелловской, понимая под температурой Тα величину, определяемую соотношением (2.5).
Плазму газового разряда часто называют низкотемпературной. Ее температура обычно не превышает 104 ...105 К, а концентрация заряженных частиц nе ≈ ni ≈ 108 ... 1015 см-3 , причем такая плазма практически всегда слабоионизована, так как концентрация нейтральных частиц nα ≈ 1012 ...1017 см -3 . В плазме сильноточного дугового разряда Т ≈ 104 ...105 К, а концентрация заряженных частиц nе ≈ ni ≈ 1018 ... 1020 см-3 при практически полной ионизации.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом