3.1.3. Взаимодействие электронного пучка с веществом
При падении электронного пучка на обрабатываемую поверхность кинетическая энергия электронов в результате их взаимодействия с атомами вещества обрабатываемой поверхности превращается в другие виды энергии.
Максимальное значение плотности мощности q2m электронного пучка в зоне его воздействия на вещество может достигать 107 ...108 Вт/см , что позволяет проводить размерную обработку материалов путем их локального испарения в месте воздействия пучка на изделие. По мере уменьшения q2m (это сравнительно просто можно осуществить расфокусировкой пучка) возможно проведение термических процессов (плавки, сварки, нагрева в вакууме), а также нетермических процессов - стерилизации, полимеризации и т. п.
Достигая обрабатываемой поверхности, электроны пучка внедряются в вещество, испытывая торможение и проходя при этом некоторый путь. Длина этого пути, изученная Шонландом, определяется по формуле
(3.9)
где δ - глубина проникания электрона в вещество, см; U - ускоряющее напряжение, В; р - плотность вещества, г/см3 .
Реальная глубина проникания электрона в вещество в соответствии с формулой (3.9) обычно не превышает нескольких десятков микрометров, но ею нельзя пренебрегать при учете взаимодействия электронов с веществом, особенно при больших значениях плотности мощности в электронном пучке. Проходя сквозь вещество, электроны взаимодействуют с кристаллической структурой или отдельными частицами вещества. При этом вследствие обмена энергией увеличивается амплитуда колебаний составляющих вещество частиц, изменяются параметры его кристаллической решетки, повышается температура вещества. Достаточно большая энергия, сообщенная электронами атомам, может привести даже к разрыву связей между отдельными атомами.
При торможении электрона в веществе кроме выделения тепловой энергии происходит еще ряд различных явлений. Суммарное выделение энергии при электронной бомбардировке поверхности расходуется на следующие основные процессы:
собственно нагрев поверхности, используемый в технологических целях;
тормозное рентгеновское излучение, возникающее при электронной бомбардировке материалов;
3)вторичная электронная эмиссия, отражение электронов и термоэлектронная эмиссия с обрабатываемой поверхности;
4)побочные явления, сопровождающиеся потерями энергии.
Следует отметить, что электронный пучок имеет максимальный коэффициент поглощения энергии в обрабатываемом веществе, достигающий 80...95 % полной мощности источника и является одним из самых эффективных источников энергии для сварки.
Нагрев обрабатываемого материала электронным пучком осуществляется в результате выделения тепловой энергии в поверхностных слоях вещества и дальнейшей передачи теплоты в его внутренние слои. Высокая интенсивность ввода энергии в вещество при электронно-лучевой обработке приводит к развитию значительных поверхностных температур, уровень которых может превышать точку кипения даже самых тугоплавких материалов.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом