3.2.1. Полихроматический свет
Обычное световое излучение часто называют полихроматическим светом, так как оно состоит из целого ряда электромагнитных волн различной длины, лежащих в видимой области оптического диапазона спектра электромагнитного излучения. Этот диапазон условно делится на различные области, границы которых Приведены в табл. 3.1.
Полихроматическое излучение обычно возникает в результате нагрева тел, когда возбуждаются составляющие их атомы и электроны. При переходе с дальних орбит на ближние они излучают электромагнитные колебания. Это излучение существует в виде отдельных квантов; энергия кванта
(3.10)
где h = 6,625 • 10-34 Дж- с - постоянная Планка; v - частота колебаний, является одной из основных характеристик кванта света -фотона.
В обычных условиях атомы вещества излучают одновременно кванты различной энергии, так как переход электронов с одних орбит на другие не носит организованного характера, что и приводит к полихроматичности излучения. В зависимости от температуры тела изменяется его энергетическая светимость (она по закону Стефана - Больцмана пропорциональна четвертой степени абсолютной температуры тела: R = σT ) и по мере увеличения температуры спектральный максимум излучения сдвигается в сторону уменьшения длины волны.
Поскольку применение энергии света для тех или иных технологических процессов связано с фокусировкой луча, полихроматичность играет в данном случае отрицательную роль. Полихроматический свет при прохождении через линзу фокусируется в виде пятна довольно значительных размеров, так как волны раз личной длины по-разному преломляются при прохождении через стекло. Это явление носит название хроматической аберрации и значительно ограничивает возможности обычных полихроматических источников.
По законам дифракции наименьший размер сфокусированного пятна равен длине волны X и для оптического диапазона составляет ≈ 1 мкм. Полихроматичность увеличивает этот размер до сотен и тысяч микрометров, в результате чего максимальная плотность мощности в пятне нагрева в данном случае не превышает 3 кВт/см2 , что соизмеримо с нагревом пламенем горелки и на 4-6 порядков меньше, чем для монохроматического луча лазера. Кроме того, фокусировка ухудшается в связи с тем, что геометрические параметры применяемых фокусирующих линз и зеркал со сферическими поверхностями имеют отклонения от значений, требуемых для точной фокусировки. Ухудшает фокусировку и то! что светящееся тело обычно имеет конечные размеры и проецируется в виде определенной геометрической фигуры.
Вместе с тем простота использования света для нагрева определяет некоторые области его применения. Это прежде всего различные солнечные печи и нагреватели, где при помощи специальных рефлекторов возможны нагрев и плавление различных материалов. Однако промышленного распространения эти установки не получили. Более целесообразным в промышленности считается использование не солнечной энергии, а специальных высокоинтенсивных источников полихроматического света типа ламп накаливания или дуговых (газоразрядных) ламп. Эти лампы выполняют в корпусах из плавленого термостойкого кварца - поэтому иногда их называют кварцевыми. Они предназначены для технологических целей, имеют мощность до нескольких десятков кВт. Кварцевые лампы без всяких дополнительных систем фокусировки позволяют нагревать обрабатываемые детали до температур 600... 1200 К, а с системами Фокусировки - до 1800...2000 К, что вполне достаточно для плавления ряда материалов.
На практике в качестве источника энергии для светолучевой сварки и пайки используют сфокусированный полихроматический свет дуговых ксеноновых ламп. В качестве источника излучения используют дуговые ксеноновые лампы сверхвысокого давления ρл = 3,5...9,5 МПа) мощностью 3...10 кВт. Такого типа лампы имеют компактную светящуюся дугу с высокой яркостью 600... 1000 Мкд/м2 ) и дают непрерывный спектр излучения, близкий к солнечному, с диапазоном длин волн λ = 0,2...2,4 мкм, занимающий в оптическом диапазоне ультрафиолетовую, видимую и инфракрасную области в процентном соотношении 9:35:56. Модуль лучистого нагрева (рис. 3.3) представляет собой эллипсоидный отражатель 2, в одном из фокусов которого располагается источник излучения 1. Отражатели, выполненные, как правило, из алюминиевых сплавов, позволяют получать на обрабатываемой поверхности плотность мощности до 3 кВт/см2 при площади пятна нагрева в 2 фокусе 5... 10 мм2 с мощностью лучистого нагрева до 2 кВт. Таким оптическим источником теплоты вполне можно сваривать детали толщиной до 2 мм для большинства металлических материалов.
Если процесс идет в вакууме или другой газовой защитной среде, световое излучение вводят в камеру через специальный (обычно кварцевый) иллюминатор. Основными достоинствами такого вида нагрева считаются отсутствие силового контакта с изделием и возможность плавного регулирования температуры.
- Раздел I источники энергии для сварки
- Глава 1. Физические основы и классификация сварочных процессов
- 1.2. Физико-химические особенности получения сварных, паяных и клеевых соединений
- 1.2.1. Механизм образования монолитных соединений твердых тел
- 1.2.2. Сварка плавлением и давлением
- 1.2.3. Пайка и склеивание
- 1.3. Термодинамика сварки и баланс энергии при сварке
- 1.3.1. Термодинамическое определение сварки
- 1.3.2. Типовой баланс энергии при сварке
- 1.3.3. Кпд сварочных процессов
- 1.4. Классификация сварочных процессов
- 1.4.1. Признаки классификации сварочных процессов
- 1.4.2. Термические процессы
- 1.4.3. Термомеханические процессы
- 1.4.5. Прессово-механические процессы
- 1.5. Требования к источникам энергии для сварки и оценка их эффективности
- 1.5.1. Оценка энергетической эффективности процессов сварки
- 1.5.2. Расчет энергоемкости процессов сварки
- Глава 2. Физические процессы в дуговом разряде
- 2.1. Электрический разряд в газах
- 2.1.1. Виды разряда
- 2.1.2. Возбуждение дуги и ее зоны
- 2.1.3. Вольт-амперная характеристика дуги
- 2.2. Элементарные процессы в плазме дуги
- 2.2.1. Основные параметры плазмы
- 2.2.2. Квазинейтральность. Плазменная частота и дебаевский радиус экранирования. Коллективные свойства плазмы
- 2.2.3. Идеальная плазма. Плазменный параметр
- 2.2.4. Эффективное сечение взаимодействия
- 2.2.5. Эффект Рамзауэра
- 2.2.6. Упругие и неупругие соударения
- 2.2.7. Потенциал ионизации
- 2.2.8. Термическая ионизация
- 2.2.10. Деионизация
- 2.3.1. Электропроводность
- 2.3.2. Амбиполярная диффузия
- 2.3.3. Теплопроводность плазмы
- 2.4. Элементы термодинамики плазмы
- 2.4.1. Термическое равновесие
- 2.4.2. Уравнение Саха
- 2.4.3. Эффективный потенциал ионизации
- 2.5. Баланс энергии и температура в столбе дуги
- 2.5.1. Баланс энергии в столбе дуги
- 2.5.2. Температура дуги
- 2.5.3. Влияние газовой среды
- 2.6. Приэлектродные области дугового разряда
- 2.6.1. Эмиссионные процессы на поверхности твердых тел
- 2.6.2. Катодная область
- 2.6.3. Анодная область
- 2.6.4. Измерения в приэлектродных областях
- 2.6.5. Баланс энергии в приэлектродных областях
- 2.6.6. Потоки плазмы в дуге
- 2.7. Магнитогидродинамика сварочной дуги
- 2.7.1. Собственное магнитное поле дуги
- 2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- 2.7.3. Внешнее магнитное поле и дуга
- 2.7.4. Вращающаяся дуга
- 2.8. Перенос металла в сварочной дуге
- 2.8.1. Виды переноса металла
- 2.8.2. Импульсное управление переносом металла в дуге
- 2.9. Сварочные дуги переменного тока
- 2.9.1. Особенности дуги переменного тока
- 2.9.2. Вентильный эффект
- 2.10. Сварочные дуги с плавящимся электродом
- 2.10.1. Ручная дуговая сварка электродами с покрытиями
- 2.10.2. Сварка под флюсом
- 2.10.3. Металлические дуги в защитных газах и вакууме
- 2.11. Сварочные дуги с неплавящимся электродом
- 2.11.1. Аргонодуговая сварка w-электродом
- 2.11.2. W-дуга в гелии
- 2.11.3. Баланс энергии w-дуги
- 2.11.4. Дуга с полым неплавящимся катодом в вакууме
- 2.12. Плазменные сварочные дуги
- 2.12.1. Виды и особенности плазменных дуг
- 2.12.2. Газовые среды
- 2.12.3. Применение плазменной дуги
- Глава 3. Термические недуговые источники энергии
- 3.1. Электронно-лучевые источники
- 3.1.1. Формирование электронного пучка
- 3.1.2. Основные физические характеристики электронного пучка
- 3.1.3. Взаимодействие электронного пучка с веществом
- 3.1.4. Применение электронно-лучевых процессов для сварки
- 3.2. Фотонно-лучевые источники
- 3.2.1. Полихроматический свет
- 3.2.2. Когерентное излучение и его основные свойства
- 3.2.3. Основные характеристики лазеров
- 3.2.4. Взаимодействие лазерного излучения с веществом
- 3.3. Газовое пламя
- 3.4. Электрошлаковая сварка
- 3.5. Термитная сварка
- Глава 4. Прессовые и механические сварочные процессы
- 4.1. Прессовые сварочные процессы
- 4.1.1. Способы термопрессовой сварки
- 4.1.2. Кузнечная сварка
- 4.2. Механические сварочные процессы
- 4.2.1. Прессово-механический контакт и холодная сварка
- 4.2.2. Трущийся контакт и сварка трением
- 4.2.3. Ударный контакт и сварка взрывом