4.3.2 Классический метод вариационного исчисления
Для изучения переходных процессов в САУ используют следующий функционал
, (4.1)
где x=x(t)- траектория обобщенного движения; - скорость движения; и - начальный и конечный моменты времени. Условие существования экстремума функционала J определяют следующим образом. Варьируют подынтегральную функцию x(t) и её производную (t) и определяют приращение интеграла (4.1) разложением его в ряд Тейлора. Отбрасывая малые члены ряда, получают первую вариацию функционала
. (4.2)
Необходимым условием существования экстремального значения интеграла J (4.1) является равенство нулю его первой вариации . Для нахождения экстремума функционала J при заданных граничных условиях =0 и =0 приравнивают к нулю выражение (4.2)
. (4.3)
Это равенство должно выполняться для любой вариации, которая удовлетворяет граничным условиям и . Интегрируя по частям (4.3), находят ,что равенство нулю возможно лишь при условии
. (4.4)
Уравнение (4.4) называют дифференциальным уравнением Эйлера. Постоянные интегрирования этого уравнения определяют из граничных условий. Решение уравнения Эйлера является необходимым и достаточным условием экстремума интеграла (4.1) при заданных граничных условиях. Для определения соответствия экстремума функционала минимуму или максимуму можно ограничится проверкой знака второй производной (условие Лежандра): при - минимум; при - максимум функционала.
Использование классического метода вариационного исчисления предполагает, что искомые функции оптимальных процессов являются непрерывными и на координаты выхода и управлений не накладываются ограничения. Поскольку на практике различные ограничения накладываются не только на ОУ, но и на САУ, то возможности использования рассмотренного метода ограничены.
- 1 Линейные дискретные модели систем управления
- 1.3.2.6 Передаточные функции разомкнутых и замкнутых импульсных
- 2 Нелинейные модели систем управления
- 2.1 Анализ равновесных режимов
- 2.1.1 Основные понятия
- 2.1.2 Структура обобщённой нелинейной сау
- 3 Линейные стохастические модели сау
- 4 Оптимальные сау
- 1 Линейные дискретные модели систем управления
- Основные понятия о дискретных сау
- 1.2 Классификация дискретных сау
- 1.3 Импульсные сау
- 1.3.1 Понятие об импульсных сау
- 1.3.2 Основной математический аппарат теории дискретных сау
- 1.3.2.1 Структурная схема сау с аим
- 1.3.2.2 Понятие о решетчатой функции
- 1.3.2.3 Понятие о разностных уравнениях
- 1.3.2.4 Дискретное преобразование Лапласа (d-преобразование)
- 1.3.2.6 Передаточные функции разомкнутых и замкнутых импульсных сау
- Построение переходной характеристики импульсной сау
- Понятие о частотных характеристиках импульсных сау
- 1.3.2.9 Теорема Котельникова-Шеннона
- 1.3.3 Анализ устойчивости импульсных сау с аим
- 1.3.3.1 Общие сведения
- 1.3.3.2 Алгебраический критерий устойчивости (аналог критерия Гурвица)
- 1.3.3.3 Алгебраический критерий Шур-Кона
- 1.3.4 Аналог критерия Михайлова
- 1.3.5 Аналог критерия Найквиста
- 1.5 Линеаризованные цифровые сау
- 1.5.1 Общие сведения
- 1.5.2 Обобщенная структурная схема цифровой сау
- 1.5.3 Передаточные функции элементов цифровой сау
- 1.5.3.1 Передаточная функция ацп
- 1.5.3.2 Передаточная функция цвм
- 1.5.3.3 Передаточная функция цап
- 1.5.3.4 Структурная схема линеаризованной цас
- 1.5.4 Оценка устойчивости и качества линеаризованной цас
- 1.5.5 Синтез цас
- 2 Нелинейные модели систем управления
- 2.1 Анализ равновесных режимов
- 2.1.1 Основные понятия
- 2.1.2 Структура обобщённой нелинейной сау
- 2.1.3 Типовые нелинейные характеристики
- 2.2 Методы линеаризации нелинейных моделей
- 2.3 Анализ поведения системы управления на фазовой плоскости ( метод фазовых траекторий )
- 2.3.1 Основные понятия
- 2.3.2 Методы построения фазовых портретов
- 2.3.3 Исследование нелинейных сау на фазовой плоскости
- 2.4 Устойчивость положений равновесия
- 2.4.1 Понятие устойчивости нелинейных систем
- 2.5 Первый и второй методы Ляпунова
- 2.5.1 Первый метод Ляпунова
- 2.5.2 Второй метод Ляпунова
- 2.5.3 Определение функций Ляпунова методом Лурье-Постникова
- 2.6 Частотный метод исследования абсолютной устойчивости
- 2.7 Исследование периодических режимов методом гармонического баланса
- 2.7.1 Сущность метода
- 2.7.2 Определение параметров предельных циклов
- 2.7.3 Устойчивость предельных циклов
- 3 Линейные стохастические модели сау
- 3.1 Модели и характеристики случайных сигналов
- 3.2 Прохождение случайных сигналов через линейные звенья и системы.
- 3.3 Анализ и синтез линейных стохастических систем при стационарных случайных воздействиях.
- 4 Оптимальные сау
- 4.1 Задачи оптимального управления
- 4.2. Критерии оптимальности
- 4.3 Методы теории оптимального управления
- 4.3.1 Общие сведения
- 4.3.2 Классический метод вариационного исчисления
- 4.3.3 Принцип максимума
- 4.3.4 Метод динамического программирования.
- 4.4 Синтез оптимальных сау
- 4.4.1 Классификация оптимальных сау
- 4.6 Робастные сау и адаптивное управление
- 4.6.1 Робастные системы управления
- 4.6.2 Самонастраивающиеся (адаптивные) сау
- 4.6.2.1 Понятие об адаптивных сау
- 4.6.2.2 Виды адаптивных систем управления
- 4.6.2.3 Самонастраивающиеся сау со стабилизацией качества управления
- 4.6.2.4 Самонастраивающиеся сау с оптимизацией качества управления